
coordinated activity of these networks in the
striatal function, and, therefore, they may partic-
ipate in its dysfunction in brain disorders. Our
results demonstrate the existence of functional
astro-neuronal networks that comprise subpop-
ulations of astrocytes, neurons, and synapses
belonging to specific brain circuits, which may
differentially control specific circuit activity through
selective signaling between particular astrocytes
and neurons.
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LANGUAGE DEVELOPMENT

The developmental dynamics of
marmoset monkey vocal production
D. Y. Takahashi,1,2* A. R. Fenley,1,2 Y. Teramoto,1 D. Z. Narayanan,1,2 J. I. Borjon,1,2

P. Holmes,1,3 A. A. Ghazanfar1,2,4*

Human vocal development occurs through two parallel interactive processes that
transform infant cries into more mature vocalizations, such as cooing sounds and
babbling. First, natural categories of sounds change as the vocal apparatus matures.
Second, parental vocal feedback sensitizes infants to certain features of those
sounds, and the sounds are modified accordingly. Paradoxically, our closest living
ancestors, nonhuman primates, are thought to undergo few or no production-related
acoustic changes during development, and any such changes are thought to be
impervious to social feedback. Using early and dense sampling, quantitative tracking
of acoustic changes, and biomechanical modeling, we showed that vocalizations in
infant marmoset monkeys undergo dramatic changes that cannot be solely attributed
to simple consequences of growth. Using parental interaction experiments, we
found that contingent parental feedback influences the rate of vocal development.
These findings overturn decades-old ideas about primate vocalizations and show
that marmoset monkeys are a compelling model system for early vocal development
in humans.

H
uman vocal development is the outcome
of interactions among an infant’s develop-
ing body and nervous system and his or
her experience with caregivers (1, 2). In-
fant cries decline over the first 3 months

as they transition into preverbal vocalizations
(3). The rates of these transitions are influenced
by social feedback: Contingent responses of care-
givers spur the development of more mature vo-
calizations (4). In contrast, nonhuman primate
vocalizations are widely viewed as undergoing
little or no production-related acoustic changes
during development, and any such changes are
attributed solely to passive consequences of
growth (5).
We tracked the vocal development ofmarmoset

monkeys (Callithrix jacchus; n = 10)—a voluble,
cooperative breeding species (6)—from the first
postnatal day (P1) until they produced adultlike
calls at 2 months of age. Recordings were taken
at least twice weekly in two contexts: undirected
(social isolation) and directed (with auditory,
but not visual, contact with their mother or
father). Such early and dense sampling is nec-
essary to accurately capture developmental
changes in marmosets because this species de-
velops rapidly (7). Each recording session began
with ~5 min in the undirected context followed
by ~15 min in the directed context, with mothers
and fathers alternating between each session.
In the undirected context, infants exhibited a

dramatic change in vocal production (Fig. 1A
and audio S1 to S8). At P1, vocalizations were
more numerous and variable in their spectro-
temporal structure than those recorded in later
weeks. The number and variability of calls dimi-
nished over 2months, approachingmature vocal
output with exclusive production of whistle-like
“phee” calls in this context (8).
To quantify this developmental change as a

continuous process without the bias of etholog-
ical labels (9), for each of the 73,421 recorded
utterances, we measured four acoustic parame-
ters similar to those used for tracking birdsong
development (10): duration, dominant frequen-
cy, amplitude modulation (AM) frequency, and
Wiener entropy (a measure of spectral flatness)
(Fig. 1B). Changes in all four parameters were
statistically significant (n = 301 sessions, P <
0.001), showing that vocalizations underwent a
transformation in the first 2 months, whereby
utterances lengthened, dominant and AM fre-
quencies decreased, and entropy decreased. This
pattern of change is consistent with both human
and songbird vocal development (10, 11). These
changes in infant vocalizations, although not
subtle, may be due solely to physical matura-
tion (5). To test this, we used body weight as a
proxy for overall growth [weight correlates well
with vocal apparatus size inmonkeys (12)].Weight
changes visibly contrasted with the trajecto-
ries of the acoustic parameters (Fig. 1, B and C).
To quantify this difference, we used weight to
predict changes in the acoustic parameters. Pre-
dicted average parameter values, given the av-
erageweight for each postnatal day, are shown
in Fig. 1B. If growth completely explained the
acoustic change, the residues would be uncorre-
lated and identically distributed across postnatal
days. Using the Akaike information criterion
(AIC), the best polynomial-fit order was three
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for all residues related to the acoustic parame-
ters (Fig. 1D). To account for possible nonlinear
relationships between growth and acoustic pa-
rameters, we log-transformed the weight and
acoustic parameters. The log-transformed weight
did not predict the log-transformed acoustic pa-
rameters (fig. S1, A to C). Thus, simple patterns
of growth (linear or nonlinear) do not accurately
predict acoustic changes in infant marmoset
vocalizations.
A subset of the early vocalizations of humans

and songbirds are incorporated into the adult
repertoire, whereas others are transient, serv-
ing as scaffolding for later vocalizations (3, 10).
To test whether infant marmosets follow a sim-
ilar trajectory, we first measured the extent to
which their calls were distinct. Two parameters,
duration and entropy, identified disjoint clusters

in syllable sequences (Fig. 2A). With develop-
ment, the clusters became more distinct and
less numerous. Using all four parameters, we
computed optimal cluster numbers for eachmar-
moset in each session (Fig. 2B). On average, the
number of clusters decreased from around four
to one or two (P < 0.001). The clusters represent
distinct ethologically based syllable types (13, 14)
(Fig. 2C). Phee syllables increased to over 95% of
all vocalizations by 2months (P < 0.001); all other
calls decreased (P = 0.005 for trills; P < 0.001
for all other syllables) (Fig. 2D). The changes in
syllable proportions potentially represent two
independent processes: change in usage (15) and
transformation of immature calls into mature
versions (Fig. 2E). Twitters and trills are pro-
duced frequently bymarmosets of all ages (13, 14),
but in adults, they are typically produced when

in visual contact with conspecifics and not in
the undirected context. Thus, twitters and trills
undergo a change in usage in the first 2 months.
In contrast, cries, phee-cries, and subharmonic
phees are only produced by infants;mature phees
are produced almost exclusively during vocal
exchanges that occur when out of visual contact
with conspecifics (8).
Because these infant-only calls share some

features with the mature phee call (e.g., a com-
mon duration), we hypothesized that they rep-
resent immature phees, consistent with vocal
transformations observed in preverbal human
infants (11) and songbirds (10) but contrasting
with previous reports on developing primates
(5). It is possible that these transitional forms
are related to growth but sound distinct be-
cause of nonlinearities in the vocal production
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Fig. 1. Infant marmoset
vocalizations undergo
dramatic acoustic
changes. (A) Vocalizations
of two infants (the postnatal
day is indicated in the
upper right of each panel).
(B) Developmental changes
in four acoustic parameters.
Red circles represent the
average values per session
for each infant studied.
Black curves indicate values
predicted by weight. Blue
curves indicate cubic spline
fits. (C) Weight changes
of each infant (orange
circles). Black and gray
curves indicate population
and individual cubic
spline fits, respectively.
(D) Regression residues
using weights as predictors
(blue points; nu, normalized
units). Blue curves indicate
cubic spline fits.



system (16). This would suggest that a single
biomechanical mechanism generates cries,
phees, and the transitional forms and that the
transitional calls result from smooth changes
through a parameter space. To test this idea,
we developed a model based on one that suc-
cessfully reproduces syllable types in zebra
finch song but that is nonspecific with regard
to songbird versus mammalian vocal anat-
omy (Fig. 3A) (17). Our simulations verified
that the model can reproduce the marmoset
call types described above (Fig. 3, B to E). The
simulations also revealed the underlying bio-
mechanics corresponding to different calls at
different levels of pressure (respiratory pow-
er) and laryngeal muscle tension (Fig. 3F).
Broadband cries were produced at low pres-
sure and muscle tension, where small varia-
tions cause large changes in spectral content
because of nonlinear vocal fold dynamics. Phees
occurred at higher pressures and tensions, and
subharmonic phees occurred in an interme-
diate region, supporting their classification as

transitional calls. Rapid switching between high
and low pressure and tension states produced
the phee-cries. Throughout, linear changes in
pressure and tension produced nonlinear acous-
tic effects.
To test the model’s overall validity and the

prediction that respiration during cries is less
stable than during phees, we measured respira-
tory activity via electromyography (EMG) in five
P1 infants. We investigated whether different res-
piratory patterns underlie cries and phees with
similar intersyllable intervals (Fig. 3, G and I).
The EMGsignalsweremore uniformacross phees
than across cries (Fig. 3, H and J), as quantified
by the cost of dynamic time warping (DTW) (18).
For each infant, the mean DTW costs for phees
were smaller than they were for cries (P < 0.001)
(Fig. 3K). Therefore, phee syllables at least partly
result from more stable respiration; immature
respiratory control leads mainly to cries early in
life, consistent with the model prediction. Over-
all, these data support our hypothesis that cries
are immature phees.

Thus, although vocal acoustic changes were
dramatic, physiological growth could explain the
transition from cries to phees, as improved res-
piratory and/or laryngeal control modulates spec-
tral parameters (Fig. 1B), reducing the entropy.
However, if the cries-to-phees transition was sole-
ly driven by physical maturation, it would be
impervious to social feedback. Yet, consistent
with a role for vocal feedback in guiding de-
velopment, marmoset monkeys exhibit a devel-
opmental pattern of FoxP2 expression in their
thalamocortical-basal ganglia circuit (19) that is
analogous to that of songbirds and humans (20).
This suggests thatmarmoset infantsmay use this
circuit to guide their phee-call development through
reward-based parental feedback, as birds and hu-
mans do (21). To assess the effect of parent-infant
vocal interactions in marmosets, we quantified
their vocal exchanges in the directed context,
where infants and their mother or father were in
auditory, but not visual, contact.
Infant and parent vocalizations were parsed

into whole multisyllabic calls according to the
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bimodal distribution of their intersyllable inter-
vals (8). We recorded 8800 infant phees, 11,798
infant cries, and 6567 adult phees, of which 2512
were contingent responses to infant phees [those
falling within a turn-taking interval as seen in
adults (8)]. Parents produced mostly phee calls
(>98%). Typical examples of infant phee and cry
production during interactions over the first
2 months and the phee/cry ratio across days are
shown in Fig. 4, A and B. As in the undirected
context (Fig. 2D), cries gave way to phees, but the
transition occurred rapidly. For each infant, we
used the point where the phee/cry ratio first
crossed zero to mark the transition day (Fig.

4C). Transitions were typically sharp, but their
timing varied substantially across infants (~10
to 40 postnatal days). If physiological growth
completely explained the cries-to-phees transi-
tion, the weight-change rate and the timing of the
transition (zero-crossing) daywould be correlated.
However, we found no significant correlation (n =
10 infants, t test, P = 0.684) (Fig. 4D); growth
alone cannot explain the timing of the cries-to-
phees transition.
We then investigated whether parental re-

sponses to infant vocalizations affect the timing
of the cries-to-phees transition. This would explain,
at least partially, its variability across infants.

Infants could be influenced by contingent re-
sponses only or by the total number of adult
vocalizations that they hear. The fraction of in-
fant phees that elicited contingent parental phee
responses before the zero-crossing day correlated
significantly with the timing of the zero-crossing
day (n = 10 infants, t test, P = 0.005) (Fig. 4E).
Proportions of noncontingent parental calls (91.5%
of all calls on average) were not significantly
correlated with this timing (n = 10 infants, t test,
P = 0.558) (Fig. 4F). Therefore, contingent vocal
responses from parents influence the timing of
the cries-to-phees transition by reinforcing the
production of phee calls.
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We address two possible caveats to this con-
clusion. First, it is possible that, through shared
genetics, fast-transitioning infants are born to
more vocally interactive parents. To test this, we
correlated the frequency of contingent parental
calls and the zero-crossing day for six full siblings
born from the same parents. If shared genet-
ics were driving the result, then there would
be no correlation between contingent paren-
tal responses and the zero-crossing day. We
found, however, that there remained a statisti-
cally significant correlation (n = 6 infants, P =
0.046) (fig. S2).Moreover, we found no difference
between the slopes of the regressions for the
full-siblings and all-infants data (test for equal-
ity, P = 0.953).
Second, it is possible that changing patterns of

infant calling are due to changes in parental call
output. The phee-call production rates of each
infant’s parents during development are shown
in Fig. 4G; neither parent changed their produc-
tion rates (mother, P = 0.132; father, P = 0.235).
Based on these analyses, we conclude that the
cries-to-phees transition is influencedby contingent
responses from parents, not by shared genetics
or changes in parental vocal output.
Our findings demonstrate that infant marmo-

set calls undergo dramatic changes during the
first 2 months of life, transforming from cries
into mature, adultlike phee calls. The timing of
this transition is partly attributable to matura-
tion but is also influenced by contingent pa-
rental vocal feedback. This is consistent with
preverbal vocal development in humans, whereby

(i) natural categories of sounds change as
respiratory, laryngeal, and facial components
mature, and (ii) in parallel, vocal feedback sen-
sitizes infants to certain features of those
sounds, and the sounds are modified accord-
ingly. Our findings contrast with previous re-
ports that nonhuman primate vocalizations
undergo little or no postnatal change and are
impervious to social feedback (5). The complex
and socially dependent vocal development we
observed in marmoset monkeys may be a nec-
essary condition of the vocal learning observed
in humans.
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population (black curve). Black and gray curves in (B) and (C) are cubic spline fits. (D) Correlation between the weight-change rate and the zero-crossing
day among infants. (E and F) Correlations between the zero-crossing day and the proportion of contingent and noncontingent parental responses,
respectively. (G) Rates of individual parental phee-call production during infant development (gray) and the population average (black).



www.sciencemag.org/content/349/6249/734/suppl/DC1 
 

 
 

Supplementary Materials for 
 

The developmental dynamics of marmoset monkey vocal production 
D. Y. Takahashi, * A. R. Fenley, Y. Teramoto, D. Z. Narayanan, J. I. Borjon, P. Holmes, 

A. A. Ghazanfar* 
 

*Corresponding author. Email: takahashiyd@gmail.com (D.Y.T.); asifg@princeton.edu (A.A.G.) 
 

Published 14 August 2015, Science 349, 734 (2015)  
DOI: 10.1126/science.aab1058 

 
 

This PDF file includes: 
 

Materials and Methods 
Supplementary Text 
Figs. S1 and S2 
Captions for Audio S1 to S8 
Captions for Supplementary Data 

 
Other Supporting Online Material for this manuscript includes the following: 
(available at www. sciencemag.org/content/349/6249/734/suppl/DC1) 
 

Audio S1 to S8 
Supplementary Data as a zipped archive 



 
 

2 
 

Materials and Methods 
 
Subjects  
All experiments were performed in compliance with the guidelines of the Princeton 
University Institutional Animal Care and Use Committee. The subjects used in the study 
were 15 infants and 6 adults (3 male-female pairs, > 2 years old), captive common 
marmosets (Callithrix jacchus) housed at Princeton University. Ten infants (all members 
of twin sets with three twin sets from the same parents) participated in the undirected and 
directed calls experiment during the first two months of postnatal period.  Another five 
infants (one set of twins, one set of triplets) were used for respiratory electromyography 
(EMG) experiments on the first postnatal day. The colony room is maintained at a 
temperature of approximately 27°C and 50-60% relative humidity, with 12L:12D light 
cycle. Marmosets live in family groups; all were born in captivity. They had ad libitum 
access to water and were fed daily with standard commercial chow supplemented with 
fruits and vegetables. Additional treats (peanuts, cereal, dried fruits and marshmallows) 
were used prior to each session to transfer the animals from their home-cage into a 
transfer cage.  
 
Experimental setup 
Beginning on their first postnatal day, we recorded the vocalizations of marmoset 
monkey infants in two different contexts: undirected (i.e., social isolation) and directed 
(with auditory, but not visual, contact with their mother or father). Early in life, infants 
are always carried by parent. Thus, the parent carrying the infant(s) was first lured from 
the home cage into a transfer cage using treats. The infant marmoset was then gently 
separated from the adult and taken to the experiment room where it was placed in a 
second transfer cage on a flat piece of foam. Avoiding separation longer than 30 minutes 
in one day and alternating with shorter sessions for undirected experiments (~ 5 min) 
minimized the stress caused by separation to the infant. The vocalizations we observed 
were identical in type to those produced when the infant is naturally separated from 
parents (e.g., when parents push them off or when they transfer them to the other parent 
for carrying or feeding). The cage rested on a table (.66m in height) in one of two 
opposing corners of the room. The testing corner was counterbalanced across sessions. A 
speaker was placed at a third corner equidistant from both testing corners and pink noise 
(amplitude decaying inversely proportional to frequency) was broadcast at ~45 dB (at 
0.88m from speaker) in order to mask occasional noises produced external to the testing 
room. An opaque curtain made of black clothes divided the room to visually occlude the 
subject from the other corner. A digital recorder (ZOOM H4n Handy Recorder) was 
placed directly in front of the transfer cage at a distance of .76m. Audio signals were 
acquired at a sampling frequency of 96kHz. Every session typically consisted of two 
consecutive undirected experiments (one twin followed by the other) and one directed 
experiment (just one of the twins on a given day). Each session started with the 
undirected experiments lasting ~5 minutes each one. The number of undirected 
experiments with at least one call production was 40, 38, 38, 38, 37, 39, 19, 15, 16, 21 
(10 infants, 301 sessions, 73,421 utterances). The order of the infants was 
counterbalanced. As soon as the undirected experiment was finished, one of the parents 
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was brought to the experiment room and put into the opposing corner of the room. A 
second digital recorder (ZOOM H4n Handy Recorder) was placed directly in front of the 
parent at a distance of .76m from the transfer cage. During this setup procedure and 
throughout the directed experiment, the opaque curtain prevented the infant and the 
parent from having visual contact. The directed experiment lasted for ~15 min. The order 
of which parent participated in the interaction was counterbalanced. If the parent took 
more than 15 minutes to be lured for the directed calls experiment, the experiment was 
aborted to avoid any excessive separation stress on infants and parents. The number of 
directed experiments for each infant was 17, 13, 13, 18, 24, 24, 22, 21, 21, 22 (195 
sessions).  
 
Detection of calls 
To determine the onset and offset of a syllable, a custom made MATLAB® routine 
automatically detected the onset and offset of any signal that differed from the 
background noise at specific frequency range. To detect the differences, we first bandpass 
filtered the entire recording signal between 6 and 10kHz. This corresponds to the 
dominant frequency of marmoset calls, i.e., the frequency with highest power, which is 
not necessarily the fundamental frequency (F0), i.e., the lowest frequency of the periodic 
components of the sound. Second, we resampled the signal to 1kHz sampling rate, 
applied the Hilbert transform and calculated the absolute value to obtain the amplitude 
envelope of the signal. The amplitude envelope was further low pass filtered to 50Hz. A 
segment of the recording without any call (silent) was chosen as a comparison baseline. 
The 99th percentile of the amplitude value in the silent period was used as the detection 
threshold.  Sounds with amplitude envelope higher than the threshold were considered a 
possible vocalization. Finally, to ensure that sounds other than call syllables were not 
included, a researcher verified whether each detected sound was a vocalization or not 
based on the spectrogram.  
 
Quantification of acoustic parameters  
After detecting the onset and offset of calls, a custom made MATLAB® routine 
calculated the duration, dominant frequency, amplitude modulation frequency, and 
Wiener entropy of each syllable. The duration of syllable is the difference between the 
offset and onset of the vocalization detected by our custom made program discussed 
above. The dominant frequency of a syllable was calculated as the average frequency at 
which the spectrogram had maximum power. The spectrogram was calculated using a 
FFT window of 1024 points, Hanning window, with 50% overlap. The amplitude 
modulation frequency was calculated in the following way. First, the signal was bandpass 
filtered between 6 to 10kHz and then a Hilbert transform was applied. The absolute value 
of the resulting signal gives us the amplitude envelope of the modulated signal. Finally, 
the amplitude modulation frequency was calculated as the dominant frequency of the 
amplitude envelope. The Wiener entropy is the logarithm of the ratio between the 
geometric and arithmetic means of the values of power spectrum for different frequencies 
(10). The Wiener entropy represents how broadband the power spectrum of a signal is. 
The closer the signal is to white noise, the higher will be the value of Wiener entropy. A 
cubic spline curve was fitted to the population data using MATLAB® csaps function. To 
verify if the parameters changed during development, we fitted a robust linear regression 
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(robustfit) using MATLAB® robustfit. We used the two-sided t-test for the nullity of the 
slope to verify the statistical significance of the slope of the linear regression (n = 301 
sessions). A cubic spline curve was fitted to individual and population weight to show the 
almost linear growth curve. 

To test if body weight, which is a highly correlated to vocal tract length (12), can 
predict the observed acoustic changes, we fitted a robust linear regression to each of the 
acoustic parameter using the weight as predictor. The robust linear regression and the 
respective residuals were calculated for each infant separately (n = 45, 42, 43, 36, 37, 37, 
14, 12, 13, 16 days of weight measurements for each infant). A cubic spline curve was 
fitted to the all residuals for all infants. To test for presence of nonlinearity in the 
residuals, we used Akaike Information Criterion (AIC) to select the order of the best 
polynomial fit on the residuals. We used the polydeg routine to calculate AIC 
(http://www.biomecardio.com/matlab/polydeg.html). To obtain the predicted average 
population values for each acoustic parameter, we calculated the robust linear regression 
between the parameter values and weights for the population data.  Then, we plotted the 
parameter value predicted for the average population weight for each postnatal day. To 
take into account possible polynomial nonlinearity in the relationship between the weight 
and acoustic parameters we applied the log transform to the weight and the acoustic 
parameters. The Wiener entropy is negative valued, therefore, we applied the log 
transform to the absolute value of the Wiener entropy. If the variables are related by some 
polynomial equation (e.g., y = a*x^p), the log transform will linearize the relationship 
(e.g., log(y) = p log(x) + log(a)) and then standard linear statistical inference can be 
applied. Once the data was log transformed, we repeated the same procedure applied to 
non-transformed data to test if body weight can predict the observed acoustic changes. 
 
Clustering analysis of the acoustic parameters 
To calculate the number of clusters for each session and subject, we used the spectral 
clustering algorithm (22) on the four acoustic parameters (duration, dominant frequency, 
amplitude modulation frequency, Wiener entropy). We used the implementation by Ingo 
Bürk (MATLAB® file exchange #34412) for the spectral clustering analysis. Sessions 
with less than 20 calls were excluded because clustering algorithm was not reliable (259 
session were included in the analysis). To determine the optimal number of clusters, we 
used slope statistics (23). We calculated the probability distribution of the optimal 
number of clusters chosen by slope statistics for all sessions and infants to show how the 
number of clusters changes during development. We fitted a robust linear regression to 
the number of clusters versus postnatal day. The statistical significance of the slope of the 
linear regression was measured using the two-sided t-test for the nullity of the regression 
slope (n = 259 sessions).  
 
Classification of type of call syllables 
Each automatically detected call was manually classified as phee, phee-cry, subharmonic-
phee, cry, twitter, and trill, based on the spectro-temporal profile measured by the 
spectrogram. To ensure validity of our classification procedure, 10 sessions chosen at 
random were classified by two different individual and compared. The classification 
matched in more than 99.9% of the call syllables. The six call types show very distinct 
spectro-temporal profiles and can be easily classified by eye (13, 14). Briefly, phee is a 
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tonelike long call with F0 at around 7-10kHz; twitter is a short upward FM sweep; trill is 
defined by sinusoidal-like FM throughout the entire call; cry is a broad-band call, with F0 
around 600Hz; phee-cry is a combination of phee and cry in any order, with each 
component lasting at least 50ms.  A subharmonic-phee is similar to phee, but with a 
strong harmonic component around 3.5-5kHz. We classified a call as subharmonic-phee 
if the harmonic component around 3.5-5kHz is visible for at least 50 ms. For each session 
and subject, the proportion of each type of call (Fig. 2D) was calculated as the sum of all 
durations of each type of syllable divided by the sum of all durations of phee, phee-cry, 
subharmonic-phee, cry, twitter, and trill. We calculated the cubic spline curve for the 
development of the proportion of each type of syllable using MATLAB® csaps. To 
statistically test the significance of the developmental change (increase or decrease), we 
fitted a robust linear regression and applied the two-sided t-test to verify the nullity of 
regression slope.  
 
Biophysical model of vocal production 
To model vocal production, we adapted and extended a biomechanical model that was 
introduced to study song generation in zebra finch (17). This was derived from previous 
models developed to understand the biomechanics of human speech (24), using nonlinear 
coordinate changes to produce a simple “normal form” (25). With appropriate parameter 
choices, detailed below, the resulting model is adequate to describe primate vocal 
production. The vocal production apparatus is simplified into three parts: the respiratory 
system, the vibratory system (syrinx in birds, larynx in primates), and the 
filtering/resonance system (the supra-glottal vocal tract). The respiratory and vibratory 
systems are reduced to the following differential equations that describe the displacement 
x and velocity y of the vocal folds 

𝑥 = 𝑦, 
𝑦 = −𝛼 𝑡 𝛾! − 𝛽 𝑡 𝛾!𝑥 − 𝛾!𝑥! − 𝛾𝑥!𝑦 + 𝛾!𝑥! − 𝛾𝑥𝑦, (1) 

 
where γ > 0 is a time constant and two additional dimensionless parameters α(t) and β(t), 
that may vary with time (t) or remain constant, respectively represent sub-glottal air 
pressure and laryngeal muscle tension. This single mass model, like that of (24), assumes 
that the vocal folds move symmetrically and support a traveling wave of fixed shape. We 
note that particular relationships among passive nonlinear stiffness and dissipation 
parameters must be assumed to obtain the form (1) with only 3 parameters. 
Vocal fold vibrations are then translated into sound pressure changes in the supra-glottal 
vocal tract using the equation 
 

𝑃!" 𝑡 = 𝑐!𝑥 𝑡 + 𝑐!𝑥 𝑡 − 𝑐!𝑥 𝑡 − 𝑟𝑃!" 𝑡 − 𝑇 , (2) 
 
where c1, c2, c3 are positive constants and T is the time taken for sound to travel through 
the supra-glottal vocal tract to the mouth and, after reflection, back to the vocal folds. The 
constants cj  are coefficients of the leading terms of a Taylor series expansion for the 
incoming pressure as a function of flow velocity, as determined from vocal fold 
displacement, velocity and acceleration (25). The reflection coefficient r < 1 describes the 
amplitude change in the reflected pressure wave 𝑟𝑃!" 𝑡 − 𝑇   that returns to interact with 
the incoming signal 𝑃!" 𝑡 . The resulting sound pressure emitted at the mouth is therefore 
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𝑃!"#$% 𝑡 = 1− 𝑟 𝑃!" 𝑡 −
𝑇
2 .            (3) 

 
Finally, we high pass filter the sound at 5kHz to simulate the filtering property of the 
supra-glottal vocal tract. Unlike the zebra finch work (17), we do not model the vocal 
cavity. The model parameters and their values used in this study are summarized in Table 
1.  
Table 1. Parameter values used for simulations. Summary of parameter values used to fit 
marmoset calls. The notation [0,2] means that values are chosen in the range 0 to 2. 
 
 
 
Parameter Interpretation                  Values 

dt Simulation time step (µs) 5 

α Nondimensional air pressure 
(au) 

[0, 2] 

β Nondimensional muscle 
tension (au) 

[0, 2] 

γ Time constant (1/ms) 45 

c1, c2, c3 Pressure coefficients (1, 0.1, 0.001) 

r Reflection coefficient 0.8 

T/2 Time steps to travel down 
the vocal tract 

9 

 
To generate the simulated calls in Fig. 3, we varied the parameters α(t) and β(t) within the 
range [0,2] indicated in Table 1 and matched the frequency spectra and temporal profiles 
of the simulated sound to the corresponding vocalizations. Numerical simulations of 
Equations (1-3) were carried out using Euler’s method in custom written MATLAB® 
codes. To improve the fit between the model and recordings, pink noise was added to the 
simulation to better match its presence in the background of the exemplar vocalizations in 
Figs. 3B-E, using the MATLAB® pinknoise function (file exchange #42919 by Hristo 
Zhivomirov) (26). The parameter β was held fixed for the cry (Fig. 3B) while α(t) was 
ramped up and down in a piecewise linear manner; for the other calls, both α(t) and β(t) 
were ramped up and down to produce the varying fundamental and harmonic frequencies 
of calls in Figs. 3C-E. High pass filtering of 𝑃!"#$% 𝑡   was done with MATLAB® eegfilt. 

To separate the parameter space into cry, subharmonic-phee, and phee regions 
(Fig. 3F), we used the relationship between F0 and the natural frequency of the resonator. 
In our model, the natural frequency was 8kHz. If F0 was the same as the natural 
frequency, the simulated call was classified as phee. If F0 was half of the natural 
frequency, the simulated call was classified as a subharmonic-phee. If F0 was less or 
equal than one third of natural frequency, the call was classified as a cry. 
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Respiratory electromyography (EMG) signal 
Infant marmosets (n=5 infants) were gently separated from the adult and taken to the 
experiment room where they were placed in a testing box that rested on a table (.66m in 
height) in one corner. Each recording session lasted for ~15 minutes. The testing box, 
made of plexiglas and wire, was in a triangular prism shape (.30m x .30m x .35m). To 
record the EMG signal, we used two pairs of Ag-AgCl surface electrodes (Glass 
technology). We put one pair of electrodes on the chest, close to the heart, and we put a 
second pair of electrodes on the back, close to the diaphragm. To improve the signal-to-
noise ratio, we applied an ECl electrode gel on the surface of the electrode. Because the 
signal closer to the diaphragm showed the clearest respiratory signal, we used only EMG 
signals from the back for our analyses. Each pair of electrodes was differentially 
amplified (250x) and the resulting signal was sent to Plexon® omniplex, which digitized 
the signal at 40kHz and sent it to a PC. To obtain the respiratory EMG signal, we 
downsampled the recorded signal to 50Hz, bandpass filtered between 1 to 4Hz, and 
calculated the first derivative (27). We used a zero-phase forward reverse digital filtering 
to avoid any spurious time delay between the vocalization and EMG signals due to 
bandpass filtering. The vocalization was simultaneously recorded using Plexon® 
omniplex. We detected the onset and offset of the syllable production in the same way as 
in the undirected experiments. The numbers of cry syllables for each infant were (n = 
378, 385, 228, 364, 457) and of phee syllables were (n = 288, 239, 130, 149, 202). 
 
Dynamic time warping (DTW) analysis 
To measure the similarity between two time series (respiratory EMG signals) with 
possibly different time lengths, we used the continuous DTW algorithm using a linear 
interpolation model. We used the routine implemented by Pau Micó  (MATLAB® file 
exchange #16350). The cost of the DTW was used as a measure of similarity between 
two signals. Smaller values of DTW cost indicate larger similarity between the signals. 
We calculated the DTW cost between all pairs of cry EMG and for all pairs of phee EMG 
for each infant. We used the two-way ANOVA to compare the mean EMG similarities 
(DTW cost) between cries and phees for each infant. The two-way ANOVA was used to 
control for the effect of variability between individuals. The post-hoc analysis was done 
with Bonferroni correction.  
 
Calculation of phee-cry ratio and zero-crossing day 
For the directed calls experiments, we defined as a whole (i.e., multisyllabic) call as any 
uninterrupted sequence of utterances of the same type (phee or cry) separated (previous 
offset to next onset) by less than 500ms (8, 28).  To quantify the developmental transition 
from cry to phee, for each session and subject, we calculated the ratio between the 
number of phee minus cry and the number of phee plus cry, i.e.,  
 
phee/cry ratio = #  !"  !"#$"%  !!!!  !"##$  !"#$%&'$  !  #  !"  !"#$"%  !"!  !"##$  !"#$%&'$

#  !"  !"#$"%  !!!!  !"##$  !"#$%&'$  !  #  !"  !"#$"%  !"#  !"##$  !"#$%&'$
. 

 
A phee/cry ratio that is greater than zero corresponds to a larger production of 

phee in comparison to cry, while a phee/cry ratio less than zero corresponds to more 
production of cry in relation to phee. To represent the change in phee/cry ratio across 



 
 

8 
 

development, we fitted a cubic spline curve to the data and the resulting curve was called 
phee/cry ratio curve. We called zero- crossing day the first point at which the phee/cry 
ratio curve was equal to zero, transitioning from a negative phee/cry ratio to a positive 
phee/cry ratio. The idea of the zero-crossing day is that it quantifies how fast each infant 
transition from cry abundant initial period to phee dominated later period. We tested if 
the rate of weight change before the zero-crossing day could predict the change in 
phee/cry ratio. For this, we first calculated the difference between two consecutive weight 
measurements and divided by the number of days between the measurements. This gives 
us the local rate of weight change. The rate of weight change was calculated as the 
average of local rate of weight changes before the zero-crossing day. If there were any 
monotonic relationship between the weight change and the timing of transition from cries 
to phees, we would expect a significant Spearman correlation (r) between the rate of 
weight change and the zero-crossing day. We also calculated the robust linear regression 
curve and the two-sided t-test of the nullity of regression slope (n = 10 infants). 
 
Contingent/non-contingent vs zero crossing day 
A parental call was classified as contingent response to an infant call if the onset of 
parental call was separated by less than 5s from the offset of the infant call and there is no 
other call between both calls (8, 29). To test if the contingent parental responses were 
related with how fast the infants transition from cry to phee, we calculated the correlation 
between the proportion of infant phees for which the parents responded before the zero-
crossing day (total number of contingent parental responses before the zero-crossing day 
divided by the total number of infant phees in the period) and the zero-crossing day. To 
calculate the correlation, we included only the proportion of contingent parental 
responses that happened before the zero-crossing day to be consistent with the causal 
ordering where the possible cause (contingent parental response) happens before the 
effect (zero-crossing day).  We calculated the robust linear regression curve and used a 
two-sided t-test to verify if the slope of the regression was significantly different from 
zero (n = 10 infants). We also calculated the Spearman correlation to measure the 
strength of interaction. As a control for the contingent response calls, we tested if the 
non-contingent parental calls were related with how fast the infants transition from cry to 
phee. To do this, we calculated the Spearman correlation between the proportion of 
parental phees that were not contingent before the zero-crossing day (total number of 
non-contingent parental phees before the zero-crossing day divided by the total number 
of parental phees in the period) and the zero-crossing day. We also calculated the robust 
linear regression curve and the two-sided t-test of the nullity of regression slope. To 
account for the possibility that the observed correlation between the proportion of infant 
phees for which the parents responded and the zero-crossing-day is a consequence of 
genetics, we calculated, for six infants that had identical parents, the Spearman 
correlation between the proportion of infant phees for which the parents responded before 
the zero-crossing day and the zero-crossing-day. Because of small sample size, to test the 
nullity of Spearman correlation, we used the exact permutation test, splitting the 
proportion of ties. We also tested if the coefficients of the robust linear regression using 
the data for all infants and for the six infants with same parents were statistically 
different. For this, we applied a bootstrap test, in which we randomly resampled with 
replacement six infants and calculated the coefficients of the robust linear fit between the 
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proportion of phees for which parents responded and the zero-crossing day. We repeated 
this procedure 10,000 times and calculated the p-value under the null hypothesis of 
equality of coefficients. 

To verify if there was any significant change in parental vocal output during 
infant development, we calculated the rate of parental phee call production. For each 
parent (mother and father), we calculated the rate of phee production during vocal 
interaction with each infant. We fitted for each parent-infant pair a cubic spline curve 
(MATLAB® csap) to represent the trajectory of phee production during infant 
development. We also fitted a cubic spline curve to the population data of phee 
production for the mother and father. To verify if there is any systematic change in the 
phee production rate during infant development, we fitted a robust linear regression and 
used the two-sided t-test of the nullity of regression slope (n = 98 sessions for mother and 
n = 97 sessions for father).   
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Supplementary Text 
Growth is not linearly related to changes in acoustic parameters 
In the main text, we showed that the overall growth measured by weight is not linearly 
correlated with the developmental change of acoustic parameters. It is still possible that a 
higher order polynomial relationship could capture better the relationship between the 
acoustic parameters and weight. A standard way to infer possible non-linear relationship 
is to use log transforms of the variables. In this way, if the variables are related by some 
polynomial equation (e.g., y = a*x^p), the log transform will linearize the relationship 
(e.g., log(y) = p log(x) + log(a)) and then standard linear statistical inference can be 
applied. Fig. S1B shows that log weight changes visibly contrast with trajectories of the 
log transformed acoustic parameters (fig. S1A). To quantify this difference, we used log 
weight to predict changes in the four log transformed acoustic parameters. Black curves 
in fig. S1A represent predicted average parameter values given the average weight for 
each postnatal day and fig. S1C shows residues of these predictions. If growth completely 
explained the acoustic parameters, the residues should be uncorrelated and identically 
distributed across postnatal days. Using Akaike Information Criterion (AIC), the order of 
the best polynomial fit was 3 for all residues related to the four acoustic parameters (Fig. 
1D, main text). These results are very similar to the results without the log transforms and 
the conclusion is exactly the same. To show this, we calculated the correlation between 
the residues for original and log transformed variables, respectively, for duration, 
dominant frequency, amplitude modulation frequency, and Wiener entropy (Spearman 
correlation = 0.943, 0.974, 0.963, -0.956; p < 0.001 for all four parameters).  
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Fig. S1. Log weight cannot predict the developmental change in the log transformed 
acoustic parameters. (A) Scatter plots of developmental changes of four log transformed 
acoustic parameters for all 10 infants, showing average values per session for each infant 
(red circles) and cubic spline fit for the population average (blue curves). Black curves 
show log transformed parameter values through development predicted by the animals’ 
average daily weights. (B) Individual log transformed weights of each infant during 
development (orange circles) and cubic spline fit (gray curves) for their weight changes; 
black curve is cubic spline fit for average population log transformed weight. (C) 
Standardized residues of the regression using log transformed weights as predictors (blue 
points) and cubic spline fitted to residues in normalized units (blue curves). 
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Fig. S2. Proportion of contingent parental calls and zero-crossing day for full-
siblings are correlated. The circles indicate the proportion of contingent parental 
response and the respective zero-crossing day. All six infants in this figure have identical 
parents. Circles with same colors indicate dizygotic twins. The black line represents the 
robust linear regression fit. 
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Audio S1 – S8 
Sound files corresponding to the spectrograms in Fig. 1A which illustrate the dramatic 
changes in vocal output of infant marmosets over the course of 2 months in the 
undirected (social isolation) context. Audio S1 to S4 correspond to the spectrograms for 
Infant 1 at P1, P13, P36, and P60, respectively. Audio S5 to S8 correspond to the 
spectrograms for Infant 2 at P1, P14, P33, and P59, respectively. 
 
 
Supplementary data 
 
Data set used to plot the figures and calculate the statistics in the article. 
SupplementaryData.zip file contains six .mat files that we describe below. 
 
1) AcousticParameter_Development.mat (Figs. 1B, 1D, 2A, 2B, 2C) 

• ParameterValuePerSubjDay(Subject, Day, Params) gives the average acoustic 
parameter value of Params (1 = duration, 2 = dominant frequency, 3 = AM 
frequency, 4 = Wiener entropy) for each Subject (marmoset 1 to 10) at Day 
(postnatal day 1 to 63). It returns NaN if there was no recording for that Day and 
Subject. 

• ParameterValuePerSubjDaySyllable{Subject}{Session}(Syllable, Params) gives 
the parameter value of Params (1 to 4) for each Syllable and Subject (1 to 10) at 
Session. The corresponding dates for the Session are given by the postnatal days 
that are not NaN in ParameterValuePerSubjDay. 

• ParameterName{Params} gives the name of parameters corresponding to Params. 
 
2) Weights.mat (Figs. 1C, 1D) 

• Weightdata{Subject}(Session, [Day Weight]) gives for each Subject (1 to 10) and 
Session the corresponding Day (postnatal day) and Weight. 

 
3) CallDuration_Development.mat (Fig. 2D) 

• TotDurationCall{Subject}{Type}(Session) gives the total duration (sum of the 
duration of all calls in a session) for each Session and given Type (1= Phee, 2 = 
Twitter, 3 = Trill, 4 = Cry, 5 = Subharmonic-phee, 6 = Phee-cry). 

• CallName{Type} gives the name of the call type for each Type.  
 
4) DTW.mat (Fig. 3K) 

• DTWdist{Type}{Subject} returns the DTW costs for all the pair of syllables for 
each Type (1 = Phee, 2 = Cry) and Subject (1 to 5). 

• CallType{Type} gives the name of the call type for each Type. 
 
5) PheeCryTransition.mat (Figs. 4A, 4B, 4C, 4D, 4E, 4F) 

• ContingentParentalResp(Subject) gives the proportion of infant calls for which 
the parents responded before the zero-crossing day for each Subject (1 to 10) 
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• NonContingentParentalResp(Subject) gives the proportion of non-contingent 
parental calls before the zero-crossing day for each Subject (1 to 10). 

• Cry{Subject}(Session) gives the total number of cries produced in Session for 
each Subject (1 to 10). 

• Phee{Subject}(Session)  gives the total number of phees produced in Session for 
each Subject (1 to 10). 

• PheeCryRatio{Subject}(Session)  gives the phees-cry ratio for each Session and 
Subject (1 to 10). 

• PostnatalDay{Subject}(Session)  gives the corresponding postnatal day for each 
Session and Subject (1 to 10). 

• RateWeightChange(Subject) gives the rate of weight change for each Subject (1 
to 10).  

• ZeroCrossingDay(Subject) gives the zero-crossing day for each Subject (1 to 10). 
 
6) MotherFatherCallRate.mat (Fig. 4G) 

• MotherPheeCallRate(Session) gives the number of phees produced per minute by 
the mother in a Session (1 to 98). 

• MotherPND(Session) gives the postnatal day of each Session for the mother (1 to 
98). 

• FatherPheeCallRate(Session) gives the number of phees produced per minute by 
the father in a Session (1 to 97). 

• FatherPND(Session) gives the postnatal day of each Session for the father (1 to 
97). 

 
 

 
 
 

 
 
 




