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The exquisite modular anatomy of the rat somatosensory sys-
tem makes it an excellent model to test the potential coding
strategies used to discriminate the location of a tactile stimulus.
Here, we investigated how ensembles of simultaneously re-
corded single neurons in layer V of primary somatosensory (SI)
cortex and in the ventral posterior medial (VPM) nucleus of the
thalamus of the anesthetized rat may encode the location of a
single whisker stimulus on a single trial basis. An artificial neural
network based on a learning vector quantization algorithm, was
used to identify putative coding mechanisms. Our data suggest
that these neural ensembles may rely on a distributed coding
scheme to represent the location of single whisker stimuli.
Within this scheme, the temporal modulation of neural ensem-
ble firing rate, as well as the temporal interactions between

neurons, contributed significantly to the representation of stim-
ulus location. The relative contribution of these temporal codes
increased with the number of whiskers that the ensembles must
discriminate among. Our results also indicated that the SI
cortex and the VPM nucleus may function as a single entity to
encode stimulus location. Overall, our data suggest that the
representation of somatosensory features in the rat trigeminal
system may arise from the interactions of neurons within and
between the SI cortex and VPM nucleus. Furthermore, multiple
coding strategies may be used simultaneously to represent the
location of tactile stimuli.
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Rodents actively use their facial whiskers to explore their envi-
ronment. Removal of these whiskers results in impaired perfor-
mance on various tactile discrimination tasks (Vincent, 1912;
Schiffman et al., 1970; Brecht et al., 1997). These behavioral
experiments have underscored the importance of the facial whis-
kers in determining the spatial location of tactile stimuli. For
example, by clipping the large caudal vibrissae of the rat’s whisker
pad and comparing performance of rats on spatial versus object
recognition tasks, Brecht et al. (1997) demonstrated that these
large caudal whiskers were critically involved in spatial tasks but
not in object recognition tasks. These authors (Brecht et al., 1997)
suggested that these whiskers act as “distance decoders,” the
function of which is to determine the location of obstacles and
openings.

At the neural level, experimental lesions within the “whisker
area” of the rat somatosensory system support the hypothesis that
the caudal whiskers and their associated neural pathways are
necessary for spatial discrimination (Hutson and Masterton,
1986). It is unclear, however, how neurons may encode the spatial
location of tactile stimuli. Coding mechanisms for determining
the spatial location of a stimulus in sensory space generally fall
into two categories: local versus distributed coding. In the local

coding scheme, the sensory space is divided into nonoverlapping
areas that can be resolved by small groups of topographically
arranged neurons. These neurons necessarily have small recep-
tive fields. One of the potential benefits of topographic maps in
sensory systems is the ability to easily identify the location of a
stimulus: localized groups of neurons respond specifically to the
presence of a stimulus in a restricted portion of the sensory space,
whereas the other neurons are quiescent. Thus, local coding can
offer exquisite specificity and speed in behavioral response. How-
ever, lesions of a particular region of this map would render the
system unable to identify stimuli delivered to discrete locations
on the receptor organ. Conversely, in the distributed coding
scheme, neurons have relatively large and overlapping receptive
fields compared with the sensory resolution measured behavior-
ally. Distributed representations allow neurons to be computa-
tionally flexible (neurons can participate in many different aspects
of sensory processing) (Richmond and Optican, 1987; Victor and
Purpura, 1996) and resistant to both central and peripheral injury
(Nicolelis, 1997).

The specialized structure of the rodent somatosensory pathway
is well suited to testing which of these potential coding strategies,
local versus distributed, is used to identify the spatial location of
sensory stimuli. The rat trigeminal somatosensory pathway con-
sists of topographically arranged clusters (or modules) of neu-
rons: “barrel columns” in the cortex (Woolsey and Van der Loos,
1970; Killackey, 1973), “barreloids” in the thalamus (Van der
Loos, 1976), and “barrelettes” in the brainstem (Ma, 1991). Each
module corresponds isomorphically to a single whisker on the
snout. The modular and topographic anatomy suggests that this
system may use a local coding scheme, whereby each module
encodes the spatial location of a single caudal whisker (Nelson
and Bower, 1990). However, the discrete cytoarchitecture of this
pathway stands in contrast to what is known regarding the phys-
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iology of this system. Neurons in these structures have large
receptive fields that extend well beyond a single caudal whisker
(Simons, 1978; Chapin, 1986; Armstrong-James and Fox, 1987;
Simons and Carvell, 1989; Nicolelis and Chapin, 1994; Moore
and Nelson, 1998; Zhu and Connors, 1999; Ghazanfar and
Nicolelis, 1999). In addition, functional studies have shown in
primary somatosensory (SI) cortex (Kleinfeld and Delaney, 1996;
Masino and Frostig, 1996; Peterson et al., 1998; Sheth et al.,
1998), ventral posterior medial (VPM) nucleus (Nicolelis and
Chapin, 1994; Ghazanfar and Nicolelis, 1997), and SpV (Nicolelis
et al., 1995) that stimulation of individual whiskers results in
responses that extend well beyond a single barrel cortical column
or VPM nucleus barreloid or spinal trigeminal nucleus (SpV)
barrelette.

To date, no study has explored the potential coding strategies in
an anatomically modular and topographic sensory system used to
represent the location of a stimulus on a single trial basis. The
presumption has always been that such systems use “local” coding
schemes to encode stimulus location. As a first step to address this
issue, we tested the potential coding strategies of simultaneously
recorded ensembles of single neurons distributed across layer V
of SI cortex and VPM nucleus of the thalamus in the anesthetized
rat and investigated how these two structures may interact with
each other to encode the location of simple tactile stimuli.

MATERIALS AND METHODS
Animals and surgical procedures
Nine adult female Long–Evans rats (250–300 gm) were used in these
experiments. Details of surgical procedures have been described else-
where (Nicolelis et al., 1997a). Briefly, animals were anesthetized with
intraperitoneal injections of sodium pentobarbital (Nembutal, 50 mg/kg)
and transferred to a stereotaxic apparatus. When necessary, small sup-
plementary injections of sodium pentobarbital (;0.1 cc) were adminis-
tered to maintain anesthesia during the surgery. After retraction of the
skin and soft tissue, small, rectangular craniotomies were made over the
SI barrel cortex and/or the VPM nucleus of the thalamus using stereo-
taxic coordinates. For layer V cortical implants, stainless-steel microwire
arrays (NB Labs, Dennison, TX) consisting of two rows, separated by 1
mm, of eight microwires were used. Each microwire was Teflon-coated
and had a 50 mm tip diameter. The inter-microwire distance within a row
was 200 mm. For VPM nucleus implants, two bundles of eight microw-
ires, cut at two different lengths, were used. The distance between
bundles was ;1 mm. For all animals, we successfully targeted the
representation for the large, caudal whiskers (B1–4, C1–4, D1–4, and
E1–4) [see Ghazanfar and Nicolelis (1999) for details on identifying
target locations]. On proper placement, microwire implants were ce-
mented to the animal’s skull with dental acrylic. The location of all
microwires was assessed by qualitative receptive field mapping during
surgical implantation, later confirmed by the quantitative response pro-
files of neurons, and then postmortem by light microscopic analysis of
Nissl-stained sections.

Data acquisition
Spike sorting
After a recovery period of 5–7 d, animals were anesthetized with sodium
pentobarbital (50 mg/kg) and transferred to a recording chamber where
all experiments were performed. A head stage was used to connect the
chronically implanted microwires to a preamplifier whose outputs were
sent to a Multi-Neuronal Acquisition Processor (Plexon Inc., Dallas, TX)
for on-line multi-channel spike sorting and acquisition (sampling rate 5
40 kHz per channel). A maximum of four extracellular single units per
microwire could be discriminated in real time using time–voltage win-
dows and a principal component-based spike sorting algorithm (Abeles
and Goldstein, 1977; Nicolelis and Chapin, 1994). Previous studies have
revealed that under our experimental conditions, ;80% of the microw-
ires yield stable single units and an average of 2.3 single units can be well
discriminated per microwire (Nicolelis et al., 1997a). Examples of wave-
forms and further details regarding acquisition hardware and spike

sorting can be found elsewhere (Nicolelis and Chapin, 1994; Nicolelis et
al., 1997a).

Recording session and whisker stimulation
After spike sorting, the simultaneous extracellular activity of all well
isolated single units was recorded throughout the duration of all stimu-
lation experiments. A computer-controlled vibromechanical probe was
used to deliver innocuous mechanical stimulation to single whiskers on
the mystacial pad contralateral to the microwire array implant. The
independent stimulation of 16 whiskers was performed per recording
session per animal. Three hundred sixty trials were obtained per stimu-
lated whisker, and the probe was then moved to another whisker (in
random order). Whiskers were stimulated by positioning the probe just
beneath an individual whisker, ;5–10 mm away from the skin. Extreme
care was taken to ensure that only a single whisker was being stimulated
at all times. A step-pulse (100 msec in duration) delivered at 1 Hz by a
Grass 8800 stimulator was used to drive the vibromechanical probe. The
output of the stimulator was calibrated to produce a ;0.5 mm upward
deflection of whiskers. Stable levels of anesthesia were maintained by
small supplemental injections of pentobarbital (;0.05 cc) and monitored
through regular inspection of brain activity, breathing rates, and tail-
pinch responses.

Data analysis
Firing rate and minimal latencies
The minimal spike latency and the average evoked firing rate of each
neuron were estimated using poststimulus time histograms (PSTHs) and
cumulative frequency histograms (CFHs). CFHs were used to measure
the statistical significance of sensory responses to tactile stimuli. These
histograms depict the cumulative poststimulus deviations from prestimu-
lus average firing seen in the PSTHs. In other words, the CFHs describe
the probability that the cumulative frequency distribution in the histo-
gram differs from a random distribution, as computed by a one-way
Kolmogorov–Smirnov test. Neuronal responses were considered statis-
tically significant if the corresponding CFH indicated a p , 0.01. These
analyses were performed on commercially available software (Stranger,
Biographics, Winston-Salem, NC). For CFHs of statistically significant
responses, the minimal latencies were measured using a single neuron
analysis program based on Kernel Density Estimation and written in
Matlab (Mathworks, Natick, MA) by Mark Laubach and Marshall Shuler
(MacPherson and Aldridge, 1979; Richmond and Optican, 1987; Ghaza-
nfar and Nicolelis, 1999). Details of this analysis procedure have been
reported elsewhere (Ghazanfar and Nicolelis, 1999).

Population histograms
Population histograms describe the sensory response of simultaneously
recorded neural ensemble to the deflection of a single whisker as a
function of poststimulus time. These three-dimensional plots are essen-
tially a collection of single neuron PSTHs stacked next to each other.
These can be generated using a range of bin widths (1, 3, 6, 10, 20, and
40 msec). The x-axis of these plots represents poststimulus time in
milliseconds, the y-axis represents the neuron number, and the z-axis
represents response magnitude in spikes per second. The neurons are
arranged randomly along the y-axis.

Single trial analysis of neural ensemble firing patterns
Extracting information from the firing patterns of populations of neurons
is difficult largely because of the combinatorial complexity of the problem
and the uncertainty about how information is encoded in the nervous
system. Our previous studies indicated that a large number of neurons
are active in the rat thalamocortical loop after the deflection of a single
whisker (Nicolelis and Chapin, 1994; Ghazanfar and Nicolelis, 1997;
Nicolelis et al., 1997a). At spike-to-spike resolution, there is also a high
degree of variability in the spike train of an individual neuron (Shadlen
and Newsome, 1998; A. Ghazanfar and M. Nicolelis, unpublished obser-
vations). Although both the number of spikes produced by a neuron and
their timing may vary from trial to trial, at the neural ensemble level the
location of a stimulus may be identified in a statistically predictable
manner. Pattern recognition approaches using multivariate statistical
methods, such as linear discriminant analysis, and artificial neural net-
works (ANNs) are effective tools for investigating this possibility (Dead-
wyler and Hampson, 1997; Nicolelis et al., 1999).
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Artificial neural network based on the learning vector
quantization classifier
In this study, an ANN was used for statistical pattern recognition analysis
of the thalamocortical responses to tactile stimuli on a single trial basis.
The ANN was constructed in Matlab using an optimized learning vector
quantization (LVQ) algorithm (Kohonen, 1997). The LVQ ANN is a
nearest-neighbor classifier, which provides a nonparametric technique
for classifying large and sparse nonlinear pattern vectors. The LVQ
algorithm was selected because of its simplicity of design and its ability to
handle our extremely large and sparse neural ensemble data sets. By
using this approach, preprocessing of neural ensemble data, by using
principal or independent component analyses, was not necessary as a
primary step in the analysis (Nicolelis et al., 1998). Thus, the only
parameters available to the LVQ ANN for pattern recognition were the
firing rate and the temporal patterning of neuronal firing within simul-
taneously recorded thalamocortical ensembles.

In the Appendix, we have described in detail the logical structure and
mathematical basis for an LVQ algorithm-based ANN used in our study.
Here, we will briefly review the specific parameters used in our study.
The first layer defined the input layer and consisted of our raw spike train
data (Fig. 1). The second layer contained two artificial neural units
(ANUs) for each class (i.e., the number of stimulus locations—whis-
kers—to be discriminated). The output value of each second layer ANU
was determined by an Euclidean distance function. The third layer of the
ANN had the same number of units as the number of classes (i.e., the
number of stimulus locations). A value of 1 was assigned to the third layer
ANUs corresponding to the “winning” second layer ANU, whereas the
rest of the third layer units were assigned the value of 0. Thus, if the fifth
ANU in the second layer had the greatest output value, the fifth ANU of
the third layer would output 1, whereas the rest of the ANUs in that layer
would output 0 sec. Each ANU in this final layer represented a unique
subset of second layer ANUs. The fourth and final (output) layer of the
ANN also contained the same number of units as there were classes of
stimulus sites to be discriminated.

The analysis of our data set included two phases: training and testing.
During the training phase of the analysis, the ANN searched for patterns
closest in Euclidean distance to one of the weight vectors. For every
analysis in this study, 25% of the trials were used for training the LVQ
ANN, and the remaining 75% were used as testing trials. To obtain an
accurate assessment of the network performance in classifying our neu-

ral ensemble data, four-way cross-validation was used and provided us
with a measurement of error. Thus, all trials used for training in one
session were then used in an independent session for testing and vice
versa. The spike train of each neuron in the ensemble from 0 to 40 msec
poststimulus time was used in all analyses. Unless noted otherwise, 4
msec bins were used to define the contribution of each neuron to the
ensemble input vector.

Exploring putative coding mechanisms
Our basic approach to investigating coding mechanisms was to compare
statistical pattern recognition performance by the ANN using normal,
“raw” neural ensemble data versus different manipulations of that data
set. Raw data manipulations included removing the number of neurons
within an ensemble, reducing the temporal resolution of spike trains, and
disrupting the phase relationships or correlated activity between
neurons.

Local versus distributed coding. One of the hallmarks of distributed
coding is the graceful degradation of ensemble performance after the
removal of neurons from an ensemble. We tested this by measuring
ensemble performance on discriminating four different whiskers (B1, B4,
E1, and E4; chance performance 5 25%) and then removing the best
predictor neuron from the ensemble one at a time, sequentially. The best
predictor neuron was determined by running the analysis with each
neuron taken out in turn and then finding the neuron that had the most
detrimental effect on ensemble performance when removed. This neuron
was then defined as the “best predictor” neuron of the ensemble. Once
this neuron was removed, the analysis was run again to quantify the
performance of the ensemble without that neuron and find the next best
predictor neuron.

Because we found that the effect of removing neurons from ensembles
resulted in a smooth degradation of ensemble performance (see Results),
we were able to estimate the number of neurons needed to achieve a 99%
correct level of performance by using a power function (Carpenter et al.,
1999): x 5 log10(z)/log10( y), x*w 5 number of neurons needed, where z
equals the desired residual information (0.01, for 99% correct) and y
equals the obtained residual for w neurons actually recorded. A power
function is necessary because information capacity changes nonlinearly
with an increasing number of neurons.

Temporal structure of ensemble firing rate. To determine whether the
temporal modulation of ensemble firing rates contributed to the perfor-
mance of thalamocortical ensembles, the integration time used to de-
scribe the sensory response (i.e., bin size) of each neuron was systemat-
ically varied between 1 and 40 msec. Increasing the bin size degrades the
temporal resolution of the response, allowing an assessment of the
relative contributions of rate and temporal coding to ensemble
performance.

Correlated activity across neuronal spike trains: spike-shif ting testing
trials. To explore the role of covariance structure on ensemble perfor-
mance, linear discriminant analysis (LDA) (Tabachnick and Fidell, 1996)
was used in our analyses. LDA was used to identify sources of variance
and to measure the covariance of firing rate activity among simulta-
neously recorded neurons. Such sources of covariance have been sug-
gested to be important for the coding of sensory stimuli (Nicolelis et al.,
1997b) and behavioral events (Deadwyler et al., 1996). Another useful
characteristic of LDA is that it derives classification functions for trial-
by-trial discrimination between different experimental groups (in this
case, the different stimulation sites). This statistical technique has been
used extensively for neural ensemble data analysis (Gochin et al., 1994;
Schoenbaum and Eichenbaum, 1995; Deadwyler et al., 1996; Nicolelis et
al., 1997b). Our application of LDA to somatosensory neural data sets
has been described in detail elsewhere (Nicolelis et al., 1997b).

To apply LDA and test the role of correlated activity among neuronal
firing patterns in the performance of our ensembles, raw spike trains
within an ensemble were temporally shifted in one of two ways. In the
first method, “spike shifting,” the spike trains within ensemble responses
were shifted relative to each other in random order, between 66 and 12
msec. Thus, from a single trial’s ensemble response, the spike train of
neuron 1 may have been shifted 17 msec, that of neuron 2 may have been
shifted 210 msec, so on and so forth. This was done for every trial in the
testing phases of the analyses. The range of “shift” times was selected
based on the finding that neural ensemble performance significantly
degraded only with bin sizes .6 msec for both SI cortex and VPM
nucleus (see Results, Fig. 5B). The second method, “trial-shuffling,” was
used to randomly replace the spike trains of each neuron with those from
another trial. After either of these procedures, normal and shifted

Figure 1. Statistical pattern recognition using an artificial neural network
(ANN). The ANN used a nearest-neighbor classifier algorithm, learning
vector quantization, to classify our large, sparse neural ensemble datasets.
The system was a multilayered, feedforward ANN with full connectivity.
In this case, the transfer function (Ft ) is a Euclidean distance measure.
The first layer consisted of our raw data; the second layer contained two
artificial neural units (ANUs) for each class (i.e., the number of whiskers);
the third layer had the same number of ANUs as classes; and the fourth
layer (data not shown) was the output layer.
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ensemble spike trains were normalized and preprocessed using principal
component analysis (PCA). PCA reduced the dimensions of the data set,
a necessary step for the proper application of LDA (as opposed to LVQ)
given the large number of variables and trials used in this study. The first
15 principal components calculated for each trial were used as the input
matrix for this analysis. Training and testing trials were divided the same
as in the LVQ ANN analyses with four-way cross-validation, and dis-
criminant functions were derived by training on normal data and testing
with “shifted” data. Ensemble performance using LDA on principal
components and LVQ on raw data were statistically identical (Nicolelis
et al., 1998).

In another set of experiments, the spike shifting procedure was applied
to both the train and testing trials for the LDA. This prevented the LDA
from building a statistical model using the normal data with temporal
relations intact and then testing with spike-shifted data. Only information
contained in the temporal modulation of firing rate for each neuron
independently within an ensemble was available, whereas any informa-
tion contained in the relationships between neurons was eliminated.

Histology
The location of each microwire was confirmed for every animal through
examination of Nissl-stained sections. After completion of recording
sessions, animals were deeply anesthetized with a lethal dose of pento-
barbital and then perfused intracardially with 0.9% saline solution fol-
lowed by 4% formalin in 0.9% saline. Brains were post-fixed for a
minimum of 24 hr in the same fixative solution. Coronal sections of the
whole brain (80 mm) were cut on a freezing microtome. Sections were
then counterstained for Nissl. Microwire tracks and tip positions were
located using a light microscope. Because microwires were chronically
implanted and remained in the brain for several days, electrode tracks
and tip positions could be readily identified by glial scars, obviating the
need for electrical lesions.

RESULTS

Ensembles of well-isolated single neurons were recorded in the SI
cortex and/or VPM thalamus from nine animals (SI cortex alone,
n 5 3; VPM nucleus alone, n 5 3; SI cortex and VPM nucleus,
n 5 3). The average SI cortical ensemble size was 34 neurons
(range 5 26–46 neurons), whereas the average VPM ensemble
was 31 neurons (range 5 26–35 neurons). Animals with both
cortical and thalamic implants were analyzed separately from
those with single implants; these dual-implanted animals had an
average of 38 neurons for cortical implants and 43 neurons for
VPM implants.

Using our experimental approach, the average receptive field
(RF) size for SI cortical neurons has been estimated to be 8.5
whiskers (Ghazanfar and Nicolelis, 1999), and the average RF
size for VPM neurons is 13.7 whiskers (Nicolelis and Chapin,
1994). Stimulation of a given single whisker can elicit a spatio-
temporally complex response from a large extent of both SI cortex
and VPM thalamus. Figure 2A depicts population histograms,
which illustrate that the stimulation of different single whiskers
can elicit unique large-scale distributed responses within the same
ensemble of simultaneously recorded SI cortical neurons. Analy-
ses of these responses (Fig. 2B) illustrate that the ensemble
response to a single whisker stimulus was characterized by a
unique distribution of individual neuron firing rate and minimal
latency. Similar results have been reported for VPM ensembles
(Nicolelis and Chapin, 1994). Can such spatiotemporal neural

Figure 2. The spatiotemporal responses of the same ensemble to different whiskers. A, A series of population histograms depict the spatiotemporally
complex responses of a single SI cortical ensemble to three different whiskers (D2, B2, and E4). The x-axis represents poststimulus time (in milliseconds),
the y-axis represents the neurons in the ensemble, and the z-axis represents firing rate (spikes per second). Each whisker elicits a unique spatiotemporal
profile of ensemble activity. B, The minimal latency (x-axis) and firing rate ( y-axis) of each neuron in the ensemble responses depicted in A are plotted
against each other. The location of single neurons within this two-dimensional “activity field” changes as a function of stimulus location. Note that
although there are 25 neurons in A, there are only 24 in these plots. This is because one neuron did not respond significantly to these three whiskers.
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activity patterns be used to identify the location of a tactile
stimulus on a single trial basis?

Comparison of single neuron versus neural ensemble
performance discriminating among 16 whiskers on a
single trial basis
Using the LVQ-based ANN, the ability of single cortical or
thalamic neurons to correctly identify the location of 1 out of 16
whisker possibilities on a single trial basis was tested. This 1 out
of 16 whisker discrimination set was used in many of our analyses
because it circumvented the animal-to-animal variation in the
placement of our microwire arrays or bundles.

Figure 3A shows that single SI cortical neurons (black bars, n 5
60) correctly classified the tactile location on 8.68 6 1.9% of the
trials (mean 6 SD; range 5 6.06–13.07%), whereas single VPM
neurons ( gray bars, n 5 63) performed significantly better (un-
paired t test, t(121) 5 22.34, p , 0.05), correctly classifying on
average 10.85 6 6.95% of trials (mean 6 SD; range 5 5.69–
39.54%). Because chance performance for 1 out of 16 whiskers
was 6.25%, individual neurons performed slightly above chance.

We next investigated how much neural ensembles outper-
formed single neurons. Figure 3B shows that SI cortical ensem-
bles (average ensemble size 5 34 neurons) performed correctly
on 46.36 6 3.55% (mean 6 SD; range 5 40.91–51.42%) of trials,
and VPM neural ensembles (average ensemble size 5 31 neu-
rons) performed correctly on 68.34 6 12.23% (mean 6 SD;
range 5 50.73–81.66%) of trials. On average, SI cortical ensem-
bles performed 7.4 times better than chance and 5.3 times better
than the average single cortical neuron. Along the same lines,
VPM ensembles performed 10.9 times better than chance and 6.3
times better than the average single VPM neuron. Overall, VPM
ensembles performed significantly better than SI cortical ensem-
bles (unpaired t test, t(22) 5 24.33, p , 0.0005). These results
indicated that although the firing patterns of single neurons in the
thalamocortical pathway can be used to identify the location of a
single whisker slightly above chance levels, small neural ensem-
bles could perform several times better than chance and several
times better than even the best single neurons.

Graceful degradation of ensemble performance
We tested whether SI cortical and VPM ensembles exhibited
graceful degradation in performance after the sequential removal
of “best predictor neurons” (see Materials and Methods). Figure
4A shows the results of this analysis for two comparably sized
neural ensembles from SI cortex (top panel) and VPM (bottom
panel). Both the SI cortical and VPM neural ensembles exhibited
a smooth (“graceful”) degradation of performance on discrimi-
nating among four different whiskers (B1, E1, B4, and E4).
Similar curves were seen for all other animals (data not shown).
In most cases, there was a smooth decay in ensemble perfor-
mance, and chance performance was not reached until only a few
neurons remained in each of the ensembles. Notice that although
individual neurons were sampled from multiple barrel cortical
columns (Ghazanfar and Nicolelis, 1999) or barreloids (Nicolelis
and Chapin, 1994), their contribution to the discrimination of
different, nonisomorphic whiskers was significant. If the neurons
were only local feature detectors, then one would expect to see
sharp drops in ensemble performance as the neurons dedicated to
a particular whisker were removed. These results suggest that
despite their anatomically modular organization, the functional
organization of the thalamocortical pathway in rats is one of a
highly distributed system, at least for the encoding of the location
of punctate tactile stimuli by layer V cortical and VPM neurons.

A comparison of the rate of decay in performance was made
between cortical and thalamic ensembles. Because of the variable
size of ensembles, this measurement was taken between n and
n–10, where n equals the number of neurons in the ensemble. On
average, SI cortical ensembles (2.1% per neuron) decayed slower
than VPM ensembles (3.4% per neuron) (unpaired t-test, t(30) 5
3.66, p , 0.001). This suggests that a smaller number of VPM
neurons carry the information for encoding tactile stimulus loca-

Figure 3. The discrimination capability of single neurons versus neural
ensembles. A, Single SI cortical and VPM neurons were tested on their
ability to discriminate the location of a whisker stimulus among 16
different possibilities. The x-axis represents the percentage of correct
classified trials, and the y-axis represents the number of neurons. Black
bars: SI cortical neurons. Gray bars: VPM neurons. Chance performance
was 6.25%. On average, both cortical and thalamic neurons performed
slightly above chance levels. B, Ensembles of SI cortical and VPM neu-
rons were similarly tested on their ability to discriminate among 16
whiskers. The percentage of correct trials is plotted on the y-axis. It can
be seen that ensembles of neurons perform several times better than
chance and several times better than the average single neuron. Further-
more, VPM ensembles perform better than SI cortical ensembles. Chance
performance was 6.25%, as indicated by the dashed line. Error bars show
1 SEM.
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tion when compared with SI cortex. This is in accordance with
both the single neuron and ensemble data from the VPM nucleus.

In an effort to estimate the minimal size of thalamic and
cortical ensembles capable of discriminating the location of a
whisker at a 99.9% level, a power equation was used to extrapo-
late from each subject’s neural ensemble performance discrimi-
nating 4, 8, 12 and 16 whiskers (see Fig. 6 for whisker identities).
As expected, for both SI cortex and VPM, more neurons were
needed to achieve 99.9% performance on increasingly difficult
discriminations (Fig. 4B). Based on the LVQ ANN, 99% dis-
crimination of one out of four whiskers would require on average
129 SI neurons and 75 VPM neurons. A 1 out of 16 whisker
discrimination would require 269 cortical and 137 thalamic neu-
rons. For all discrimination sets, almost twice as many cortical
neurons were needed than VPM neurons. Interestingly, the num-
ber of neurons needed seemed to plateau between discrimina-
tions among 1 out of 12 and 1 out of 16 whiskers for both SI cortex
and VPM neurons—the required ensemble size did not increase
linearly with the complexity of the discrimination. This is another
hallmark of distributed coding. Above a given ensemble size,
some collective property of the neuronal population could ac-
count for this effect. Therefore, we next investigated what form
such a collective property may take.

Interaction between rate and temporal coding in
cortical and thalamic neural ensembles
To investigate how the temporal modulation of neural ensemble
firing affected the discrimination of tactile location on a single
trial basis, we parametrically increased the size of the integration
window (i.e., bin size) used to generate the input vector for our
LVQ ANN analysis. By increasing the bin sizes, we degraded the
temporal resolution of the population signal but kept the number
of spikes produced by the ensemble constant. This effect can be
seen in Figure 5A where the same SI cortical ensemble response
to a single whisker is plotted with different bin sizes (3, 6, 10, and
20 msec). Notice that although temporal information was de-
graded by this manipulation, simple firing rate differences could
conceivably be used to discriminate among different whisker
deflections. Figure 5B shows the performance of SI cortical and
VPM ensembles when the LVQ algorithm was used to measure
their ability to discriminate among 1 out of 16 whiskers using
different bin sizes (1, 3, 6, 10, 20, and 40 msec bins). For both SI
cortical and VPM ensembles, discrimination performance de-
graded significantly when the bin size was increased to 10 msec
(SI cortex: 6 vs 10 msec, t(15) 5 4.15, p , 0.001; VPM: 6 vs 10
msec, t(15) 5 5.58, p , 0.0005). For cortical ensembles, a bin size
of 1 msec actually degraded performance significantly (vs 3 msec
bins, t(11) 5 20.03, p , 0.0005). Further reduction in perfor-
mance was observed as bin sizes were increased beyond 10 msec.
Nevertheless, both SI cortical and VPM ensembles still per-

4

the dashed line. B, The number of neurons needed within a cortical or
thalamic population to achieve 99.9% correct performance was extrapo-
lated from their average performance discriminating 4, 8, 12, and 16
whiskers. The number of cortical neurons needed to achieve near-perfect
performance was approximately twice as much for discriminating 16
whiskers versus 4 whiskers (black line). Similarly, the number of neurons
necessarily increased with increasing discrimination difficulty. Interest-
ingly, for both SI cortical and VPM ensembles, the number of neurons
needed reached plateau between 12 and 16 whiskers, suggesting that the
number of neurons needed is not linearly related to the number of classes
to be discriminated.

Figure 4. Distributed coding properties of cortical and thalamic ensem-
bles. A, Degradation of ensemble performance discriminating four dif-
ferent whiskers (B1, B4, E1, and E4) was measured after the sequential,
one-by-one removal of the best predictor neuron. Here it can be seen that
the sequential removal of SI cortical neurons resulted in the graceful
degradation of one cortical ensemble performance (top panel ). All other
cortical ensembles showed the same effect. Similarly, the performance of
a thalamic ensemble also gracefully degraded when neurons are removed
one by one (bottom panel ). Chance performance was 25%, as indicated by
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formed at greater than chance levels when only the overall aver-
age firing rate within a trial was used (40 msec bins). Thus,
although the temporal modulation of ensemble response con-
veyed significant information about stimulus location, the total
number of spikes seemed to contribute a larger proportion of
information under these particular experimental conditions.

Effects of disrupting correlated activity among neurons
Spike shif ting and trial shuffling of testing trials
Because the activity of a large number of neurons was recorded
simultaneously, we could test whether the covariance structure
within ensemble responses contributed to ensemble performance.
Because the LVQ algorithm is not particularly suited to analyzing
the covariance structure among neurons, LDA, which explicitly
looks for covariance structure, was applied to our ensemble data
sets. LDA was applied before and after temporally shifting the
ensemble spike trains 66–12 msec relative to each other (spike
shifting) and before and after randomly shuffling the trials of
individual neuron spike trains (trial shuffling). In these data
manipulations, first, a set of linear discriminant functions was
derived using normal, unshifted trials. Next, three sets of new
trials (which were not used to derive the discriminant functions)
were used to measure the ability of these discriminant functions
to predict the location of a stimulus on a single trial basis. These
three sets included (1) normal, unshifted trials, (2) trials in which
the timing of individual spikes for each neuron had been shifted

relatively to each other (spike shifting), and (3) a set of data in
which the order of trials was randomized for each neuron tested
with the shifted data set (trial shuffling). The time range for spike
shifting was selected based on the degradation of ensemble per-
formance when the temporal resolution was decreased from 6 to
10 msec (Fig. 5B). To assess the possibility that correlated activity
may play different roles when different numbers of whiskers are
used (i.e., increasing the difficulty of the discrimination), the same
analysis was performed on thalamic and cortical ensemble re-
sponses to different combinations and numbers of whiskers (1 out
of 4, 8, 12, or 16 whiskers).

Spike shifting of single trial neuronal responses resulted in an
overall increase in the variance calculated from mean ensemble
responses (0.4789 vs 0.4918; t(15) 5 22.18, p , 0.05). This value
was obtained by measuring the change in variance of each trial’s
ensemble response from the mean ensemble response before and
after the spike shifting procedure. As result of this increase in
variance, Figure 6 shows that in every case, for both SI cortex and
VPM neurons, disrupting the correlated activity between neu-
rons using the spike shifting procedure resulted in a significant
decrease in ensemble performance, regardless of which whisker
combination was used. In SI cortex, for example, single trial
discrimination of the location of a stimulus in one out of four
whiskers dropped from 72.36 6 6.91% (mean 6 SD) correct to
47.17 6 5.72% (mean 6 SD) correct after the correlated activity

Figure 5. Interaction between rate and temporal coding. A, A series of population histograms depict the effects of increasing bin size (3, 6, 10, and 20
msec) on the temporal resolution of ensemble responses. The x-axis represents the number of bins, the y-axis represents the neurons, and the z-axis
represents the response magnitude. As shown here, such temporal manipulations preserve the overall number of spikes in the response but destroy the
temporal resolution. B, The interaction between rate and temporal coding was tested on SI cortical and VPM thalamic ensembles discriminating among
16 whiskers. Ensemble performance was systematically tested with different bin sizes (1, 3, 6, 10, 20, and 40 msec). It can be seen that performance
degraded significantly for both cortical and thalamic ensembles when bin sizes .6 msec were used. This suggests that the temporal distribution of spikes
conveys important information regarding tactile stimulus location. Chance performance was 6.25%, as indicated by the dashed line.
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between neurons was disrupted, a difference of ;35%. Similarly,
for VPM neurons, correct discrimination of one out of four
whiskers dropped from 77.38 6 6.44% (mean 6 SD) correct to
62.28 6 5.40% (mean 6 SD) correct after correlated activity.

The magnitude of the effect of disrupting correlated activity
varied according to the difficulty of the discrimination and
whether the ensembles were located in SI cortex or VPM thala-
mus. This was measured by taking the difference between normal
and spike-shifted performance and dividing this by the value
obtained for normal performance [i.e., (normal 2 spike-shifted)/
normal]. The effect of disrupting the temporal relationships be-
tween neurons was greater when the location of the stimulus had
to be identified from a larger number of whiskers for both SI
cortex and thalamus (two-way ANOVA, F(3,88) 5 36.93, p ,
0.000001). The same analysis revealed that correlated activity
between neuronal firing played a larger role in cortical ensemble
performance than thalamic ensemble performance (F(1,88) 5
17.23, p , 0.0001).

Next, trial shuffling was used to evaluate whether intratrial-
correlated activity across the neural ensemble played any role in
coding tactile location. To measure this potential coding strategy,
the spike trains of each neuron were randomly replaced with the
spike train of the same neuron from another trial. Shuffling of the
trial order for each neuron resulted in an overall decrease in the
variance as measured by calculating the variance of each trial’s
ensemble response relative to the mean ensemble response before
and after trial shuffling (0.4789 vs 0.2455; t(15) 5 10.57, p ,
0.00001). Figure 7 shows that for both SI cortex and VPM
neurons, ensemble performance discriminating among one out of
four whiskers was minimally affected (ensembles performed
slightly better) or not at all by trial shuffling, especially when
compared with spike shifting. Similar results were obtained for 1

out of 8, 12, and 16 whisker sets (data not shown). Because
shifting spike trains temporally relative to each other within a
trial disrupted performance (but shuffling them across trials did
not), it appears that the temporal relationships between spike
trains within an ensemble response played a significant role in
identifying stimulus location.

Spike shif ting both the training and testing trials
By spike shifting both the training and testing trials in the LDA,
we were able to prevent the analysis procedure from using any
form of correlated activity to build its statistical model. In com-
parison with the performance of intact cortical and thalamic
ensembles, we found that spike shifting both the training and
testing trials of cortical and thalamic ensembles significantly dis-
rupted performance (Fig. 8). Unlike disrupting the test trials
alone, the magnitude of the effect was not different for cortical
versus thalamic ensembles (two-way ANOVA, F(1,88) 5 0.603,
p 5 0.439). However, as the number of whiskers increased in the
discrimination set, the magnitude of the effect also increased
(two-way ANOVA, F(3,88) 5 28.58, p , 0.00001). We interpret
these results as suggesting that correlated activity plays a signif-
icant role in the coding of tactile location in both thalamic and
cortical ensembles and that the role of correlated activity as a
coding dimension increases as function of the number of whiskers
to be discriminated. However, disrupting training and testing
trials did not have a greater effect on coding tactile location than
did disrupting testing trials alone. Across all whisker sets, disrupt-
ing testing trials alone had a greater effect on both cortical and
thalamic ensembles than spike shifting training and testing trials
as measured by magnitude differences in performance (SI cortex:
t(47) 5 27.38, p , 0.00001; VPM: t(47) 5 229.14, p , 0.001).

Figure 6. Effect of disrupting the correlated activity between neurons on ensemble performance. The effect of shifting spike trains relative to each other
within an ensemble response was measured using linear discriminant analysis. Only spike trains of the testing trials were shifted randomly between 66
and 12 msec. For both SI cortex (top panels) and VPM (bottom panels) neurons, ensemble performances were significantly worse after the covariance
structure among neurons within ensembles was disrupted, regardless of the difficulty of the discrimination task (4, 8, 12, and 16 whiskers; the spatial
patterns are depicted at the top of the figure). Chance performance is indicated by a dashed line in each graph.
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Temporal evolution of ensemble performance
Because the sensory responses of SI and VPM neurons exhibited
considerable modulation over poststimulus time (Nicolelis and
Chapin, 1994; Ghazanfar and Nicolelis, 1997, 1999), we investi-
gated the poststimulus time course of SI cortical and VPM
ensemble performance in discriminating among 1 out of 16 whis-
kers. We did this by dividing the poststimulus activity into eight
5 msec poststimulus time epochs. Figure 9A demonstrates that
VPM ensemble coding was bimodal, peaking around 5–15 msec
and then again at 25–30 msec, whereas SI cortical ensemble
coding peaked between 10 and 20 msec. In addition, above chance
performance occurred in both structures concurrently for several
milliseconds. In support of this result, Figure 9B depicts the
simultaneously recorded activity of SI cortical and VPM ensem-
bles after the deflection of a single whisker. After an initial
activation of VPM ensembles between 5 and 15 msec, activity was
concurrent between SI cortex and VPM ensembles for several
milliseconds. Cortical activity peaked between 15 and 30 msec, in
agreement with the ensemble performance analysis. Although
not unequivocal, this temporal pattern of ensemble performance
is suggestive of reverberatory activity between SI cortical and
VPM ensembles and their collective involvement in the discrim-
ination of stimulus location.

Discrimination performance of simultaneously
recorded thalamocortical ensembles versus SI cortex
or VPM ensembles alone
To further explore the interactions between these structures, SI
cortical and VPM ensembles were recorded simultaneously in
three animals, and the performance of both ensembles together
was compared with the performance of each structure alone in
discriminating one out of four whiskers (B1, B4, E1, and E4). As
shown in Figure 10, thalamocortical ensembles performed signif-

icantly better than either SI cortex alone (t(11) 5 27.50, p ,
0.00005) or VPM alone (t(11) 5 27.06, p , 0.0005). However, the
increase in performance when SI cortex and VPM neurons were
combined was not additive, suggesting that there was a degree of
redundant information between these structures. Thus, simply
increasing the number of neurons within a somatosensory
thalamocortical ensemble did not necessarily increase perfor-
mance in a linear fashion.

In support of the contention that the SI cortex and VPM
neurons function interactively, Figure 11 A shows a plot of the
effects of dropping the best predictor neuron from a thalamo-
cortical ensemble of 75 neurons discriminating among four
whiskers (B1, B4, E1, and E4), where 79% of trials were
correctly classified. If the two structures were independent, one
would expect to see a sharp drop in performance as the
ensemble switches from dropping VPM neurons to SI cortical
neurons, because VPM neurons perform, on average, better
than SI cortical neurons (Fig. 3); instead, graceful degradation
was still present when the two structures were combined.
Figure 11 B depicts the graceful degradation of SI cortical and
VPM ensembles when considered separately. Again, the linear

Figure 7. Influence of intratrial correlations on ensemble performance.
Another method of disrupting the covariance between neurons, trial
shuffling, was applied to cortical and thalamic ensembles. With this
method, the spike train neurons were randomly removed and replaced
with spike trains from the same neurons from other trials. This disrupted
any potential intratrial covariation. As seen in this Figure, this method did
not degrade ensemble performance for SI cortex ( gray bars) or VPM
(black bars) neurons as measured by linear discriminant analysis. Chance
performance was 25%, as indicated by the dashed line.

Figure 8. The effect of spike shifting on both the training and testing
trials was used to measure the influence of correlated activity in ensemble
coding. Decorrelating activity significantly degraded ensemble perfor-
mance for both cortical and thalamic ensembles and for all sets of
whiskers (see Fig. 4 for whisker identities).
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sum of their performance would result in .100% correct
classification. Extrapolation of SI cortical and VPM ensemble
performance revealed that they would require 49 and 48 neu-
rons, respectively, to achieve 79% correct independently, 35%
fewer neurons than are actually needed when both structures
were combined again. This further suggests the presence of
redundancy in the representation of information about tactile
stimulus location across SI cortex and VPM.

DISCUSSION

We found that the rat somatosensory system, despite its anatom-
ically modular and topographic organization, could rely on a
distributed coding scheme to represent the location of tactile
stimuli. Within this coding scheme, both the spatial and temporal
components of the ensemble activity conveyed significant infor-
mation. The important temporal aspects of coding included the

Figure 9. Temporal evolution of ensemble performance. A, The time course of SI cortical (lef t) and VPM (right) ensemble performance discriminating
among 16 whiskers was measured by dividing ensemble responses into 5 msec poststimulus time epochs (bin size within an epoch was 1 msec). SI cortical
ensembles peaked at 10–20 msec, whereas VPM ensembles peaked at 5–15 msec and then again at 25–30 msec. Better than chance level performance
occurred concurrently for several milliseconds between these two structures. B, Here, raw activation plots of simultaneously recorded SI cortical and
VPM ensembles demonstrate that activity between these two structures, after the deflection of a single whisker, occurred concurrently for several
milliseconds poststimulus time. Three-dimensional matrices were used to represent the poststimulus firing of neurons in VPM and SI neurons according
to their location on the 2 3 8 electrode arrays implanted in each of these structures. In each electrode array (represented by two panels plotted side by
side and separated by an empty space), the x-axis represents the mediolateral position (lef t 5 medial) of the neurons in the recording probe; the y-axis
represents the rostrocaudal position (top 5 rostral-most wires 1 and 9; bottom 5 caudal-most wires 8 and 16 ); and the z-axis, plotted in a gray-scale
gradient, represents the variation in neuronal response magnitude (white 5 higher than 4 SDs of the spontaneous firing rate; dark gray 5 baseline firing
rate). All sensory responses were extracted from PSTHs obtained after 360 stimulation trials.
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modulation of ensemble firing over poststimulus time and the
correlated activity among neurons within ensembles. Further-
more, we obtained evidence that suggests that the relative con-
tribution of correlated activity among neurons in coding a stim-
ulus location changed as a function of the discrimination set.
Finally, we found that the thalamus and cortex can encode tactile
information concurrently and that at least some information
between them is redundant, suggesting that these two structures
may function as a single unit. On the basis of these results, we
propose that the rat somatosensory thalamocortical pathway uses
multiple strategies to encode tactile stimulus location. The extent
to which a strategy is used may depend on the difficulty of the task.

Although many studies have focused on single neuron firing
patterns (Richmond et al., 1990; McClurkin et al., 1991a; Middle-
brooks et al., 1994, 1998; Victor and Purpura, 1996) and on
pair-wise interactions between neurons (Gray et al., 1989;
Ahissar et al., 1992; deCharms and Merzenich, 1996; Dan et al.,
1998), there are only few studies that have examined how ensem-
bles of single neurons function together to represent simple
stimuli. To circumvent this problem, some investigators have
constructed population vectors from serially recorded single units
to study potential coding schemes at the level of ensembles
(Georgopoulos et al., 1986; Gochin et al., 1994; Fitzpatrick et al.,
1997). Despite its usefulness and the important insights gained
from this approach, it does not allow one to investigate various
“collective” strategies, such as temporal interactions.

The recent advent of new electrophysiological techniques that
allow one to record from populations of several tens of well
isolated neurons simultaneously has made such studies of ensem-
ble coding feasible (Wilson and McNaughton, 1994; Deadwyler et
al., 1996; Nicolelis et al., 1997a, 1998). Nevertheless, identifying
methods for analyzing such large data sets remains a challenge
(Deadwyler and Hampson, 1997). To accomplish this goal, we
adopted a strategy that takes advantage of pattern recognition
algorithms that use both multivariate statistical methods (Gochin

et al., 1994; Deadwyler et al., 1996; Nicolelis et al., 1997b) and
artificial neural networks (Nicolelis et al., 1998, 1999). It is im-
portant to emphasize, however, that the application of statistical
pattern recognition techniques to “decode” the identity of a
stimulus does not imply that these methods bear any resemblance
to the actual mechanisms through which the nervous system
represents tactile information. Instead, they offer us a way to
quantify ways in which information could be embedded in neural
activity patterns.

Behavioral relevance
Two important facts must be considered when interpreting our
results. First, our data were collected from anesthetized rats.
Second, our analyses were all based on whether neural ensembles
can discriminate 1 out of x number of whiskers. Both of these
issues bear on the relevance of our data to the behaving animal.
After all, during natural exploratory behaviors, rats use their
whiskers actively and make multiple contacts with objects in their
environment.

The dynamic and distributed nature of ensemble responses to
single whisker deflections in the anesthetized rat is indistinguish-
able in both its temporal evolution and spatial extent from re-
sponses seen in the awake animal in certain behavioral states
(Chapin and Lin, 1984; Fanselow and Nicolelis, 1999). Chapin
and Lin (1984) found that SI RFs are qualitatively the same in

Figure 10. Redundancy of information within thalamocortical ensem-
bles. In animals in which SI cortex and VPM ensembles were recorded
simultaneously, ensemble performance discriminating among four whis-
kers (B1, B4, E1, and E4) was measured for each structure independently
and then with the structures combined as a single ensemble. Here,
combining structures did increase the performance of the ensemble but
the increase was not linear, suggesting that there is a considerable amount
of redundant information between SI cortex and VPM ensembles.
Chance performance was 25%, as indicated by the dashed line.

Figure 11. Graceful degradation of thalamocortical ensembles. A, To
test further whether SI cortex and VPM ensembles function as a single
entity, we combined ensembles and measured how sequentially removing
the best predictor neuron affected performance discriminating four whis-
kers (B1, B4, E1, and E4). Depicted here is the performance of one such
ensemble; it degraded gracefully. Chance performance was 25%, as
indicated by the dashed line. B, Here, the graceful degradation of the
separate SI cortical and VPM ensembles is depicted. Chance perfor-
mance was 25%, as indicated by the dashed line.
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both the anesthetized and awake conditions. If anything, RFs
were slightly larger in the awake state. This finding is supported
by more recent studies using more quantitative analyses in which
it has also been shown that, depending on the behavioral state,
the system appears optimized for the detection of simple stimuli
(Fanselow and Nicolelis, 1999). Thus, we believe that our sensory
responses in the anesthetized condition are an accurate represen-
tation of the responses one would see in at least some behavioral
states in the awake animal.

Our approach in this study was to determine the extent to
which ensembles could distinguish between the deflection of one
whisker among others. Because the rat uses the entire caudal
mystacial pad simultaneously to actively detect the spatial at-
tributes of its environment (Carvell and Simons, 1990), we asked
whether our ensembles (or single neurons) could distinguish
between one whisker out of 4–16 other whiskers. Within the
context of natural whisking behavior, such a task is quite reason-
able. Brecht et al. (1997) have elegantly shown that the caudal
whiskers, unlike the finer-grained rostral whiskers, are primarily
used to detect the spatial location of objects or openings. Based
on morphological and behavioral considerations, these authors
conclude that the major information format in the barrel cortex is
the “binary touched/untouched signal.” Furthermore, it has been
shown repeatedly that animals can accurately perform spatial
tasks with only one whisker (Hutson and Masterton, 1986; Harris
et al., 1999), showing again that a single whisker is an appropriate
“sensory unit” to investigate. Within this framework, our use of
the 1 out of x whiskers paradigm for ensemble performance is
quite reasonable. The next experimental step ought to involve
more complex multi-whisker discriminations in behaving animals.

Single neurons versus neural ensembles
Our study indicated that ensembles of SI cortical and VPM
neurons were several times better than single neurons at identi-
fying the location of a stimulus on the whisker pad on a single
trial basis. Moreover, ensemble performance degraded gracefully
when neurons were removed, one by one, from the population.
These results, combined with the fact that single whiskers can
elicit a spatiotemporally complex response from a large portion of
SI cortex (Armstrong-James et al., 1992; Kleinfeld and Delaney,
1996; Masino and Frostig, 1996; Moore and Nelson, 1998; Peter-
son et al., 1998; Ghazanfar and Nicolelis, 1999) and VPM
(Nicolelis and Chapin, 1994), strongly suggest that despite their
modular anatomy, the rat SI cortex and VPM neurons may rely on
distributed encoding strategies to identify stimulus location on a
single trial basis.

Along similar lines, in the auditory cortex of the cat, Middle-
brooks et al. (1994, 1998) found that single neurons were also
broadly tuned for sound location and suggested that a distributed
population code would be required to encode the location of
auditory stimuli at the accuracy levels observed psychophysically.
Thus, because the activity of a broadly tuned neuron is unable by
itself to provide unequivocal information concerning stimulus lo-
cation, such activity is only meaningful in the context of the
activity of other neurons (Erickson, 1968). Importantly, there is
not a topographic map of auditory space in the cortical area where
these neurons were sampled from, suggesting that such maps are
not necessary for coding spatial location with great precision.

Our data suggest that single neurons or even small, localized
groups of neurons are, by themselves, inefficient processors of
sensory information. It has been argued, however, that individual
neurons may be the dominant coding units for near-threshold

stimuli. This “lower envelope principle” states that sensory
thresholds are set by the sensory neurons that have the lowest
threshold for the stimulus used (Barlow, 1995). Several points
argue against the possibility of single neuron decoders in the rat
somatosensory system. First, receptive fields mapped with smaller
whisker deflections (i.e., low-threshold stimuli) than used in this
study and previous studies (Nicolelis and Chapin, 1994) have
comparably sized receptive fields (Armstrong-James and Fox,
1987; Simons and Carvell, 1989). Thus, the spatial tuning of
neurons is similar even for smaller whisker deflections than those
used in the present study. Second, an optical imaging study, in
which whisker deflection amplitudes were parametrically manip-
ulated, demonstrated that even weak stimuli elicit a response that
extends well beyond a single barrel cortical column in SI cortex
(Peterson et al., 1998). To reiterate, despite the anatomical mod-
ularity and topography in both SI and VPM neurons, stimulation
of each whisker activates cells in locations beyond its isomorphic
barrel or barreloid. Within a barrel column, for example, individ-
ual neurons receive synaptic inputs from multiple whiskers
(Moore and Nelson, 1998; Zhu and Connors, 1999). Such inter-
connectivity necessarily gives rise to large, distributed responses.

For the barrel cortex, layer V neurons have, on average, the
largest RFs (Simons, 1978; Chapin, 1986). It is therefore possible
that single neurons or smaller groups of neurons in other barrel
cortical layers could accurately distinguish the location of tactile
stimuli. For example, although layer IV neurons have large and
dynamic multi-whisker RFs at the subthreshold level (Moore and
Nelson, 1998), these are ultimately reduced in size by inhibitory
interactions resulting in suprathreshold RFs of only one or two
whiskers. Nevertheless, the majority of supragranular and infra-
granular layer neurons of barrel cortex and VPM neurons have
large, multi-whisker RFs (Simons, 1978; Chapin, 1986; Nicolelis
and Chapin, 1994), and it is the infragranular neurons that are the
primary source of SI output. Indeed, neurons in layer V send
axons to various intracortical and subcortical targets (Killackey et
al., 1989; Koralek et al., 1990). Thus, the study of layer V ensem-
bles gives a more accurate perspective of the neural activity that
downstream targets have to decode.

VPM neural ensembles perform better than SI cortex
Both single neurons and ensembles of the VPM nucleus per-
formed better than SI cortex for 1 out of 16 whisker discrimina-
tions. This is interesting in light of the fact that VPM neurons
have larger receptive fields than SI cortex; i.e., the tuning of
neurons becomes sharper from thalamus to cortex (Simons, 1978;
Armstrong-James and Fox, 1987; Simons and Carvell, 1989;
Nicolelis and Chapin, 1994; Ghazanfar and Nicolelis, 1999). Rate
of decay data also suggested that fewer VPM neurons are needed
to encode stimulus location when compared with SI layer V
neurons. Perhaps this difference in performance can be attributed
to the fact that VPM neurons fire at a higher rate under anes-
thetized (Simons and Carvell, 1989; Nicolelis and Chapin, 1994;
Ghazanfar and Nicolelis, 1999) and awake (Nicolelis et al., 1995)
conditions and exhibit greater temporal modulation of their re-
sponses than SI cortical neurons (Fig. 9A). Thus, under these
conditions VPM ensembles provide information in more dimen-
sions for encoding stimulus attributes. In the auditory system, it
was found that sharper tuning of neurons in later stages of the
pathway resulted in more efficient population vector coding of
sound localization than earlier stages with more broadly tuned
neurons (Fitzpatrick et al., 1997). It is conceivable that this
difference between our results and those of Fitzpatrick et al. (1997)
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for the auditory system is attributable to the fact that our ensemble
analysis incorporated temporal information across neurons.

Although we did not test the role of this property in the current
study, “bursting” may also play a role in coding stimulus location.
Bursts are characterized as a series of spikes with short interspike
intervals, and neurons in both layer V (Amitai and Connors,
1995) and thalamus (Godwin et al., 1996) may display bursting
behavior. The relevance of bursts for information encoding and
transmission in the somatosensory thalamocortical pathway
awaits further study.

Inseparability of rate and temporal coding parameters
Several single neuron studies have demonstrated that the tempo-
ral modulation of firing rate can carry a significant amount of
stimulus-related information (Richmond et al., 1990; McClurkin
et al., 1991a; Middlebrooks et al., 1994, 1998; Victor and Purpura,
1996). In these studies, single neurons were shown to encode
various features (color, spatial frequency, etc.) simultaneously
when time was used as a coding dimension. These results support
the idea that different features of a stimulus do not need to be
encoded by distinct populations of neurons each devoted to a
particular stimulus. Instead, the same population of neurons
could encode multiple stimulus attributes simultaneously by using
distinct encoding strategies (e.g., firing rate, time-modulation of
rate, correlated activity, etc.) to represent each of these features
(Nicolelis et al., 1998).

The importance of the temporal dimension in our data was
demonstrated by showing that decreasing the temporal resolution
of neural ensemble response resulted in significant decreases in
performance for both SI cortex and VPM ensembles. Our data
suggest, therefore, that both the number of spikes and the tem-
poral modulation of the ensemble firing can carry information
regarding stimulus location. Firing rate differences among neu-
rons in SI cortex and VPM ensembles, however, were still suffi-
cient to encode stimulus location several times above chance
levels. Similar results have been reported for area SII in primates
(Nicolelis et al., 1998). Thus, the ensemble coding of tactile
stimulus location seems to be best represented when both the
temporal modulation of the neural ensemble response and the
average firing rate are taken into account.

Other forms of temporal coding—the phase relationships and
potentially other forms of correlated activity—were tested by
spike shifting, a procedure that randomly jitters individual spike
trains relative to one another, and by trial shuffling, a procedure
aimed at disrupting the intratrial covariance structure of ensem-
ble responses. Spike shifting, but not trial shuffling, resulted in
significantly degraded ensemble performance for both SI cortex
and VPM ensembles. This suggests that phase relationships be-
tween the stimulus-locked modulation of firing rate changes
across the ensemble encode stimulus location in the thalamocor-
tical loop. This type of covariance structure among neurons is
maintained in trial shuffling but disrupted in spike shifting.

This study also revealed that the role of correlated activity
between neurons in ensemble performance increased as a func-
tion of the difficulty of the discrimination: as the number of
whiskers to discriminate among increased, so did the contribution
of correlated activity as a coding domain. Related to this, the
number of neurons needed to encode stimulus location did not
increase linearly as the number of whiskers increased but instead
reached plateau between 12 and 16 whiskers (Fig. 4B). We
speculate that these results may be interpreted as an indication
that more neurons are not necessarily needed because of a cor-

responding shift toward the increased use of different coding
dimensions. This gives rise to the hypothesis that the encoding
mechanism selected by the neural ensemble may be task depen-
dent. Thus, under different circumstances, such as behavioral
states (Fanselow and Nicolelis, 1999), the same neural ensemble
may take advantage of distinct strategies according to the context
in which a particular computation is performed.

It has been argued that covariation of neural activity and the
temporal discharge patterns of cortical neurons transmit little or
no information and that rapid changes in firing rate are the sole
information channel for coding (Shadlen and Newsome, 1998).
Our data and previous studies (Richmond et al., 1990; McClurkin
et al., 1991a; Middlebrooks et al., 1994, 1998; Victor and Purpura,
1996; Dan et al., 1998; Nicolelis et al., 1998) argue for a more
balanced account of the role of time in neural coding in the
thalamocortical loop. Indeed, our results demonstrate that de-
creasing the temporal resolution of the ensemble response (but
keeping spike count information unchanged) and disrupting the
covariance structure among cortical and thalamic neurons can
significantly degrade the discrimination performance of thalamo-
cortical ensembles. Nevertheless, ensemble performance subse-
quent to both of these manipulations always remained above
chance, suggesting that firing rate changes do play a major role in
the transmission of sensory information.

The primary somatosensory cortex and thalamus
function as a single unit
Several findings in this study argue in favor of the view that in the
rat somatosensory system, SI cortex and VPM neurons function
as a single entity in the discrimination of stimulus location on a
single trial basis. First, measurements of the raw ensemble re-
sponses of simultaneously recorded cortical and thalamic ensem-
bles revealed concurrent activity for several milliseconds of post-
stimulus time (Ghazanfar and Nicolelis, 1997). Second, the
temporal analysis of SI cortical and VPM ensemble performance
revealed that above chance performance occurred in both struc-
tures concurrently. Third, dropping neurons one at a time from
thalamocortical ensembles resulted in the graceful degradation of
performance. Finally, the two structures showed some redun-
dancy of information in the coding of stimulus location. Coupled
with the extensive data on the reciprocal anatomical connections
between these two structures (Chmielowska et al., 1989; Bourassa
et al., 1995), these results suggest the existence of tightly related
functional neural ensembles that could be used, among other
things, to encode tactile stimulus location. In support of this con-
tention, neurons in the primate somatosensory and visual system
also seem to encode information concurrently in reciprocally con-
nected structures (McClurkin et al., 1991b; Nicolelis et al., 1998).

Conclusions
One of the potential benefits of topographic maps in the sensory
systems of vertebrates is the ability to easily identify the location
of a stimulus: localized groups of neurons respond specifically to
the presence of stimulus in a restricted portion of the sensory
space. Yet despite the precise topographic arrangement of mod-
ules along the rat trigeminal somatosensory pathway, this sensory
system does not appear to restrict its encoding repertoire to a
local coding scheme. Instead, our data demonstrate that a distrib-
uted coding scheme, in which the participation of a large number
of neurons located in many different modules across the thalamo-
cortical pathway is necessary, may be used by this system to
compute the location of a tactile stimulus on a single trial basis.
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Within this scheme, both the spatial and temporal characteristics
of neural ensemble firing convey information. Moreover, our data
suggest that the strategies that the system may use change as a
function of the number of stimulus locations to discriminate, a
measure of the degree of difficulty.

In summary, the representation of sensory features appears to
arise from the dynamic interactions among neurons within and
between brain structures, which include various coding strategies.
We also propose that, depending on behavioral states and/or the
task at hand (or whiskers, in this context), the CNS may rely on
different strategies to solve the same problem. In this framework,
pure firing rate coding and multiple time codes may coexist in the
same ensemble.

APPENDIX
The LVQ classification system used for this study is a multilayer,
feedforward ANN with full connectivity. The first layer is simply
the input or pattern vector. The second layer contains an ANU
for each pattern to be discriminated. Each ANU has a weight
vector with an equivalent number of elements as the input (pat-
tern) vector. There is no bias value for these ANUs. The output
value of each ANU is determined by the following Euclidean
distance function:

ai(W i,I) 5 2\I 2 W i\ , (1)

where ai is the output value for the i th ANU, Wi is the weight
vector, and I is the input vector for the system. The unit with the
greatest output value has the weight vector that is closest in
Euclidean distance to the input vector. This is known as the
“winning” ANU.

The LVQ learning rule
Each ANU is responsible for recognizing input patterns. Because
the class of patterns that each of these ANUs must find is
predetermined (supervised learning), it must be penalized for
finding a pattern of the wrong class and rewarded for finding a
pattern of the correct class. This is realized by the optimized
LVQ (Kohonen 1997).

Let c define the index of the winner in the second layer:

c 5 arg min{\I 2 W i\}
i , (2)

and let ai(t) the learning-rate factor assigned to each Wi, then:

Wc~t 1 1! 5 @1 2 s~t! ac~t!#Wc~t! 1 s~t! ac~t!I~t! , (3)

where

s~t! 5 11 if I is classified correctly

s~t! 5 21 if I is classified incorrectly,

and after each learning step:

ac~t! 5 @1 2 s~t! ac~t!# ac~t 2 1!. (4)

This classification system searches for patterns closest in Euclid-
ean distance to one of our input weight vectors, so each of these
weight vectors is a codebook vector that the system will use for
classification. The LVQ algorithm shown moves these codebook
vectors closer to properly classified input training vectors and
away from improperly classified training vectors by the learning
rate ai(t), which decreases after each learning step.

Initialization
The weight vectors of the ANUs are all initialized to the same
value: the midpoint of the range of values of the input vectors.
They differ, however, in what class of pattern they are assigned to
recognize. Because this is a supervised learning algorithm, each
ANU is preassigned to one class during initialization. During
training, these ANUs learn to recognize the class to which they
are preassigned. In general, there must be at least as many ANUs
as there are classes to be discriminated, although it is possible to
have more ANUs than classes. In this study, two ANUs are
assigned to each class so that there are twice as many ANUs as
there are classes.

Training
Training the LVQ network involves executing the LVQ learning
rule for all the input vectors repeatedly until the ANU weight
vectors have moved as close as possible to their assigned class of
input patterns. In this study we chose a sufficiently large number
of iterations to ensure that this occurs: two times the product of
the number of input vector patterns and the number of ANUs.
This number of training iterations was determined empirically to
be sufficient such that the weights of the ANUs have become the
optimal codebook vectors for classification of input patterns.

Testing
To test the LVQ network we present it with trials that were not
used during training. One ANU weight vector will be the “win-
ning” ANU, and the class to which it was preassigned is the
predicted classification of the input pattern. If this matches the
actual class of the input pattern, proper classification has been
achieved, and if it does not then an improper classification has
occurred.
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